您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 山东省泰安市岱岳区2014届九年级上期末数学试题及答案
山东省泰安市岱岳区2014届九年级(上)期末数学试卷一、选择题(本大题共16小题,每小题3分,共48分)1.已知⊙O1与⊙O2相切,⊙O1的半径为3cm,⊙O2的半径为2cm,则O1O2的长是()A.1cmB.5cmC.1cm或5cmD.0.5cm或2.5cm2.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()A.40°B.50°C.80°D.100°3.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)4.2013年“五•一”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家抽到同一景点的概率是()A.B.C.D.5.将二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为()A.y=(x﹣1)2+3B.y=(x+1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣36.反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④7.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()8.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=39.若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点()A.(2,4)B.(﹣2,﹣4)C.(﹣4,2)D.(4,﹣2)10.如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2.则S阴影=()A.πB.2πC.D.π11.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()12.如图,函数y=﹣x与函数y=﹣的图象相交于A、B两点,过AB两点分别作y轴的垂线,垂足分别为C、D,则四边形ABCD的面积为()A.2B.4C.6D.813.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③ac>0;④当y<0时,x<﹣1或x>2.其中正确的个数是()A.1B.2C.3D.414.绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4mB.5mC.6mD.8m15.如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是()A.30°B.45°C.60°D.90°16.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值为()A.3B.6C.D.二、填空题(本大题共5小题,满分20分,只要求填写最后结果,每小题填对得4分)17.二次函数y=﹣2(x﹣5)2+3的顶点坐标是_________.18.一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是_________.19.如图,函数y=ax﹣1的图象过点(1,2),则不等式ax﹣1>2的解集是_________.20.反比例函数y=的图象经过点(2,﹣1),则k的值为_________.21.如图,在边长为2的正三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为_________.三、解答题(本题共4小题,满分52分,解答应写出必要的文字说明,证明过程或推演步骤)22.(12分)如图,AB为⊙O的直径,点C为⊙O上的一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.试判断CD与⊙O的位置关系,并说明理由.23.(13分)在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?24.(13分)工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?25.(14分)如图,已知抛物线y=﹣x2+bx+4与x轴相交于AB两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).(1)求抛物线的表达式及它的对称轴方程;(2)求点C的坐标,并求线段BC所在直线的函数表达式;(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
本文标题:山东省泰安市岱岳区2014届九年级上期末数学试题及答案
链接地址:https://www.777doc.com/doc-7543582 .html