您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 广元市苍溪县2016届九年级上期末数学试卷含答案解析
2015-2016学年四川省广元市苍溪县九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.如图,将正方形图案绕中心O旋转180°后,得到的图案是()A.B.C.D.2.一元二次方程x2+2x=0的根是()A.x=0或x=﹣2B.x=0或x=2C.x=0D.x=﹣23.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.4.袋中装有除颜色外完全相同的a个白球,b个红球,c个黄球,则任意摸出一个球是红球的概率是()A.B.C.D.5.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)6.把抛物线y=x2+1向右平移3个单位,再向下平移2个单位,得到抛物线()A.y=(x+3)2﹣1B.y=(x+3)2+3C.y=(x﹣3)2﹣1D.y=(x﹣3)2+37.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°8.一元二次方程x2﹣2x+3=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.有两个实数根9.下列命题中,不正确的是()A.垂直平分弦的直线经过圆心B.平分弦的直径一定垂直于弦C.平行弦所夹的两条弧相等D.垂直于弦的直径必平分弦所对的弧10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③二、填空题(共5小题,每小题3分,满分15分)11.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.12.若x=3是一元二次方程x2+mx+6=0的一个解,则方程的另一个解是.13.如图,⊙O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为cm.14.扇形的弧长为10πcm,面积为120πcm2,则扇形的半径为cm.15.如图是某公园一圆形喷水池,水流在各个方向沿形状相同的抛物线落下,建立如图所示的坐标系,如果喷头所在处A(0,1.25),水流路线最高处M(1,2.25),如果不考虑其他因素,那么水池的半径至少要m,才能使喷出的水流不至落到池外.三、解答题(共9小题,满分75分)16.用适当的方法解下列方程:(1)x2﹣4x﹣12=0;(2)5x2﹣3x=x+1.17.已知关于x的方程x2﹣2(m+1)x+m2=0,(1)当m取什么值时,原方程没有实数根;(2)对m选取一个合适的非零整数,使原方程有两个实数根,并求这两个实数根的平方和.18.在一个不透明的纸箱里装有2个红球、1个白球,它们除颜色外完全相同.小明和小亮做摸球游戏,游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你用树状图或列表法说明理由.19.在下面的网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,BC=3,AC=6.①试作出△ABC以B为旋转中心,沿顺时针方向旋转90°后的图形△BA1C1;②若点A的坐标为(﹣3,4),试建立合适的直角坐标系,并写出B,C两点的坐标.20.已知二次函数y=2x2﹣4x﹣6.(1)用配方法将y=2x2﹣4x﹣6化为y=a(x﹣h)2+k的形式;并写出对称轴和顶点坐标;(2)在平面直角坐标系中,画出这个二次函数的图象;(3)当x取何值时,y随x的增大而减少?(4)当x取何值时,y=0,y>0,y<0;(5)当0<x<4时,求y的取值范围.21.如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),D为⊙C在第一象限内的一点且∠ODB=60°,解答下列各题:(1)求线段AB的长及⊙C的半径;(2)求B点坐标及圆心C的坐标.22.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为5,∠BAC=60°,求DE的长.23.某商场购进一种单价为40元的商品,如果以单价60元售出,那么每天可卖出300个.根据销售经验,每降价1元,每天可多卖出20个.假设每个降价x(元),每天销售量y(个),每天获得最大利润W(元).(1)求出y与x的函数关系式;(2)6000元是否为每天销售这种商品的最大利润?如果是,请说明理由;如果不是,请求出最大利润,此时这种商品的销售价应定为多少元?24.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(﹣1,a),B(3,a),且最低点的纵坐标为﹣4.(1)求抛物线的表达式及a的值;(2)设抛物线顶点C关于y轴的对称点为点D,点P是抛物线对称轴上一动点,记抛物线在点A,B之间的部分为图象G(包含A,B两点),如果直线DP与图象G恰好有两个公共点,结合函数图象,求点P纵坐标t的取值范围.(3)抛物线上有一个动点Q,当点Q在该抛物线上滑动到什么位置时,满足S△QAB=12,并求出此时Q点的坐标.2015-2016学年四川省广元市苍溪县九年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.如图,将正方形图案绕中心O旋转180°后,得到的图案是()A.B.C.D.【考点】生活中的旋转现象.【专题】操作型.【分析】根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,找到关键点,分析选项可得答案.【解答】解:根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,分析选项,可得正方形图案绕中心O旋转180°后,得到的图案是C.故选:C.【点评】图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.2.一元二次方程x2+2x=0的根是()A.x=0或x=﹣2B.x=0或x=2C.x=0D.x=﹣2【考点】解一元二次方程-因式分解法.【分析】首先提取公因式x可得x(x+2)=0,然后解一元一次方程x=0或x+2=0,据此选择正确选项.【解答】解:∵x2+2x=0,∴x(x+2)=0,∴x=0或x+2=0,∴x1=0或x2=﹣2,故选A.【点评】本题考查了因式分解法解一元二次方程的知识,解答本题要掌握因式分解法解方程的步骤,先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,此题难度不大.3.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.【考点】一元二次方程的解.【分析】根据方程的解的定义,把x=0代入方程,即可得到关于a的方程,再根据一元二次方程的定义即可求解.【解答】解:根据题意得:a2﹣1=0且a﹣1≠0,解得:a=﹣1.故选B.【点评】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.4.袋中装有除颜色外完全相同的a个白球,b个红球,c个黄球,则任意摸出一个球是红球的概率是()A.B.C.D.【考点】概率公式.【分析】由袋中装有除颜色外完全相同的a个白球,b个红球,c个黄球,直接利用概率公式求解即可求得答案.【解答】解:∵袋中装有除颜色外完全相同的a个白球,b个红球,c个黄球,∴任意摸出一个球是红球的概率是:.故选B.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【考点】二次函数的性质.【分析】根据抛物线的顶点式解析式写出顶点坐标即可.【解答】解:y=(x﹣1)2+2的顶点坐标为(1,2).故选A.【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.6.把抛物线y=x2+1向右平移3个单位,再向下平移2个单位,得到抛物线()A.y=(x+3)2﹣1B.y=(x+3)2+3C.y=(x﹣3)2﹣1D.y=(x﹣3)2+3【考点】二次函数图象与几何变换.【分析】易得原抛物线的顶点及平移后抛物线的顶点,根据平移不改变抛物线的二次项系数可得新的抛物线解析式.【解答】解:由题意得原抛物线的顶点为(0,1),∴平移后抛物线的顶点为(3,﹣1),∴新抛物线解析式为y=(x﹣3)2﹣1,故选:C.【点评】考查二次函数的几何变换;用到的知识点为:二次函数的平移不改变二次项的系数;得多新抛物线的顶点是解决本题的突破点.7.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.8.一元二次方程x2﹣2x+3=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.有两个实数根【考点】根的判别式.【专题】计算题.【分析】根据根的判别式△=b2﹣4ac的符号来判定一元二次方程x2﹣2x+3=0的根的情况.【解答】解:∵一元二次方程x2﹣2x+3=0的二次项系数a=1,一次项系数b=﹣2,常数项c=3,∴△=b2﹣4ac=4﹣12=﹣8<0,∴原方程无实数根.故选A.【点评】本题考查了根的判别式,解题的关键是根据根的判别式的情况决定一元二次方程根的情况.9.下列命题中,不正确的是()A.垂直平分弦的直线经过圆心B.平分弦的直径一定垂直于弦C.平行弦所夹的两条弧相等D.垂直于弦的直径必平分弦所对的弧【考点】垂径定理.【分析】根据垂径定理及其推论即可判定B错误,A、D正确,根据圆周角定理的推论可知C正确.【解答】解:A、根据垂径定理的推论可知,垂直平分弦的直线经过圆心;故本答案正确.B、直径是最长的弦,任意两条直径互相平分,但不一定互相垂直,故被平分飞弦不能是直径;故本答案错误.C、如图所示,两弦平行,则圆周角相等,圆周角相等,则弧相等;故本选项正确.D、根据垂径定理可知,垂直于弦的直径必平分弦所对的弧;故本选项正确.故选B.【点评】本题考查了垂径定理及圆周角定理,对于一个圆和一条直线来说如果一条直线具备下列,①经过圆心,②垂直于弦,③平分弦(弦不是直径),④平分弦所对的优弧,⑤平分弦所对的劣弧,五个条件中的任何两个,那么也就具备其他三个.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①当x=1时,结合图象y=a+b+c<0,故此选项正确;②当x=﹣1时,图象与x轴交点负半轴明显小于﹣1,∴y=a﹣b+c>0,故本选项错误;③由抛物线的开口向上知a>0,∵对称轴为1>x=﹣>0,∴2a>﹣b,即2a+b>0,故本选项错误;④对称轴为x=﹣>0,∴a、b异号,即b<0,图象与坐标相交于y轴负半轴,∴c<0,∴abc>0,故本选项正确;∴正确结论的序号为①④.故选:C.【点评】
本文标题:广元市苍溪县2016届九年级上期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7543624 .html