您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 2014年中考数学试题解析分类汇编02 实数
实数一、选择题1.(2014•安徽省,第1题4分)(﹣2)×3的结果是()A.﹣5B.1C.﹣6D.6考点:有理数的乘法.分析:根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.解答:解:原式=﹣2×3=﹣6.故选:C.点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值的运算.2.(2014•安徽省,第6题4分)设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8考点:估算无理数的大小.分析:首先得出<<,进而求出的取值范围,即可得出n的值.解答:解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.点评:此题主要考查了估算无理数,得出<<是解题关键.3.(2014•福建泉州,第1题3分)2014的相反数是()A.2014B.﹣2014C.D.考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:2014的相反数是﹣2014.故选B.点评:本题考查了相反数的概念,在一个数的前面加上负号就是这个数的相反数.4.(2014•广东,第1题3分)在1,0,2,﹣3这四个数中,最大的数是()A.1B.0C.2D.﹣3考点:有理数大小比较.新*课标*第*一*网分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣3<0<1<2,故选:C.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.5.(2014•珠海,第1题3分)﹣的相反数是()A.2B.C.﹣2D.﹣考点:相反数.专题:计算题.分析:根据相反数的定义,只有符号不同的两个数是互为相反数,﹣的相反数为.解答:解:与﹣符号相反的数是,所以﹣的相反数是;故选B.点评:本题主要相反数的意义,只有符号不同的两个数互为相反数,a的相反数是﹣a.6.(2014•广西贺州,第1题3分)在﹣1、0、1、2这四个数中,最小的数是()A.0B.﹣1C.1D.1考点:有理数大小比较分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣1<0<1<2,故选:B.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.7.(2014•广西贺州,第4题3分)未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元B.8.45×103亿元C.8.45×104亿元D.84.5×102亿元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将8450亿元用科学记数法表示为8.45×103亿元.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2014•广西玉林市、防城港市,第1题3分)下面的数中,与﹣2的和为0的是()A.2B.﹣2C.D.考点:有理数的加法.分析:设这个数为x,根据题意可得方程x+(﹣2)=0,再解方程即可.解答:解:设这个数为x,由题意得:x+(﹣2)=0,x﹣2=0,x=2,故选:A.点评:此题主要考查了有理数的加法,解答本题的关键是理解题意,根据题意列出方程.9.(2014•广西玉林市、防城港市,第2题3分)将6.18×10﹣3化为小数的是()A.0.000618B.xkb1.comXkb1.com0.00618C.0.0618D.0.618考点:科学记数法—原数.分析:科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到.解答:解:把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到为0.00618.故选B.点评:本题考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.10.(2014•新疆,第1题5分)下表是四个城市今年二月份某一天的平均气温:城市吐鲁番乌鲁木齐喀什阿勒泰气温(℃)﹣8﹣16﹣5﹣25其中平均气温最低的城市是()A.阿勒泰B.喀什C.吐鲁番D.乌鲁木齐考点:有理数大小比较分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣25<﹣16<﹣8<﹣5,故选:A.点评:本题考查了有理数比较大小,负数比较大小,绝对值大的数反而小.11.(2014•毕节地区,第3题3分)下列运算正确的是()A.xkb1.comπ﹣3.14=0B.+=C.a•a=2aD.a3÷a=a2考点:同底数幂的除法;实数的运算;同底数幂的乘法.分析:根据是数的运算,可判断A,根据二次根式的加减,可判断B,根据同底数幂的乘法,可判断C,根据同底数幂的除法,可判断D.解答:解;A、π≠3.14,故A错误;B、被开方数不能相加,故B错误;C、底数不变指数相加,故C错误;D、底数不变指数相减,故D正确;故选:D.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.12.(2014•武汉,第1题3分)在实数﹣2,0,2,3中,最小的实数是()A.﹣2B.0C.2D.3考点:实数大小比较分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣2<0<2<3,最小的实数是﹣2,故选:A.点评:本题考查了实数比较大小,正数大于0,0大于负数是解题关键.13.(2014·台湾,第11题3分)如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与11﹣239最接近?()XkB1.cOMA.AB.BC.CD.D分析:先确定的范围,再求出11﹣239的范围,根据数轴上点的位置得出即可.解:∵62=36<39<42.25=6.52,∴6<39<6.5,∴12<239<13,∴﹣12>﹣239<﹣13,∴﹣1>11﹣239<﹣2,故选B.点评:本题考查了数轴和估算无理数的大小的应用,解此题的关键是求出11﹣239的范围.14.(2014•湘潭,第1题,3分)下列各数中是无理数的是()A.B.﹣2C.0D.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、正确;B、是整数,是有理数,选项错误;C、是整数,是有理数,选项错误;D、是分数,是有理数,选项错误.故选A.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.(2014•益阳,第1题,4分)四个实数﹣2,0,﹣,1中,最大的实数是()A.﹣2B.0C.﹣D.1考点:实数大小比较.分析:根据正数大于0,0大于负数,正数大于负数,比较即可.解答:解:∵﹣2<﹣<0<1,∴四个实数中,最大的实数是1.故选D.点评:本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.16.(2014年江苏南京,第4题,2分)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.考点:实数的大小的比较分析:根据无理数的定义进行估算解答即可.解答:A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故答案为B.点评:此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.17.(2014年江苏南京,第5题,2分)8的平方根是()A.4B.±4C.2D.考点:平方根的定义分析:直接根据平方根的定义进行解答即可解决问题.解答:∵,∴8的平方根是.故选D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18.(2014•扬州,第6题,3分)如图,已知正方形的边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()(第8题图)A.0.1B.0.2C.0.3D.0.4考点:估算无理数的大小分析:先估算出圆的面积,再根据S阴影=S正方形﹣S圆解答.解答:解:∵正方形的边长为1,圆与正方形的四条边都相切,∴S阴影=S正方形﹣S圆=1﹣0.25π≈﹣0.215.故选B.点评:本题考查的是估算无理数的大小,熟知π≈3.14是解答此题的关键.19.(2014•呼和浩特,第1题3分)下列实数是无理数的是()A.﹣1B.0C.πD.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是整数,是有理数,选项错误;B、是整数,是有理数,选项错误;C、正确;D、是分数,是有理数,选项错误.故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.20.(2014•呼和浩特,第7题3分)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bcB.|a﹣b|=a﹣bC.﹣a<﹣b<cD.﹣a﹣c>﹣b﹣c考点:实数与数轴.分析:先根据各点在数轴上的位置比较出其大小,再对各选项进行分析即可.解答:解:∵由图可知,a<b<0<c,∴A、ac<bc,故本选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故本选项错误;C、∵a<b<0,∴﹣a>﹣b,故本选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故本选项正确.故选D.点评:本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.21.(2014•滨州,第1题3分)估计在()A.0~1之间B.1~2之间C.2~3之间D.3~4之间考点:估算无理数的大小.分析:根据二次根式的性质得出,即:2,可得答案.解答:解:∵出,即:2,所以在2到3之间.故答案选:C.点评:本题考查了估算无理数的大小和二次根式的性质,解此题的关键是知道在和之间.22.(2014•德州,第1题3分)下列计算正确的是()A.﹣(﹣3)2=9B.=3C.﹣(﹣2)0=1D.|﹣3|=﹣3考点:立方根;绝对值;有理数的乘方;零指数幂.分析:A.平方是正数,相反数应为负数,B,开立方符号不变.C.0指数的幂为1,1的相反数是﹣1.D.任何数的绝对值都≥0解答:解:A、﹣(﹣3)2=9此选项错,B、=3,此项正确,C、﹣(﹣2)0=1,此项正确,D、|﹣3|=﹣3,此项错.故选:B.点评:本题主要考查立方根,绝对值,零指数的幂,解本题的关键是确定符号.23.(2014•菏泽,第3题3分)下列计算中,正确的是()A.a3•a2=a6B.(π﹣3.14)0=1C.()﹣1=﹣3D.=±3考点:负整数指数幂;算术平方根;同底数幂的乘法;零指数幂.分析:根据同底数幂相乘,底数不变指数相加;任何非零数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数,算术平方根的定义对各选项分析判断利用排除法求解.解答:解:A、a3•a2=a3+2=a5,故本选项错误;B、(π﹣3.14)0=1,故本选项正确;C、()﹣1=3,故本选项错误;D、=3,故本选项错误.故选B.点评:本题考查了负整数指数次幂等于正整数指数次幂的倒数,同底数幂的乘法,零指数幂的定义以及算术平方根的定义,是基础题.二.填空题1.(2014•安徽省,第11题5分)据报载,2014年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为2
本文标题:2014年中考数学试题解析分类汇编02 实数
链接地址:https://www.777doc.com/doc-7551541 .html