您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 高中数学竞赛专题讲座之函数的基本性质
基础知识:函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的.关于函数的有关性质,这里不再赘述,请大家参阅高中数学教材及竞赛教材:陕西师范大学出版社刘诗雄《高中数学竞赛辅导》、刘诗雄、罗增儒《高中数学竞赛解题指导》.例题:1.已知f(x)=8+2x-x2,如果g(x)=f(2-x2),那么g(x)()A.在区间(-2,0)上单调递增B.在(0,2)上单调递增C.在(-1,0)上单调递增D.在(0,1)上单调递增提示:可用图像,但是用特殊值较好一些.选C2.设f(x)是R上的奇函数,且f(x+3)=-f(x),当0≤x≤23时,f(x)=x,则f(2003)=()A.-1B.0C.1D.2003解:f(x+6)=f(x+3+3)=-f(x+3)=f(x)∴f(x)的周期为6f(2003)=f(6×335-1)=f(-1)=-f⑴=-1选A3.定义在实数集上的函数f(x),对一切实数x都有f(x+1)=f(2-x)成立,若f(x)=0仅有101个不同的实数根,那么所有实数根的和为()A.150B.2303C.152D.2305提示:由已知,函数f(x)的图象有对称轴x=23于是这101个根的分布也关于该对称轴对称.即有一个根就是23,其余100个根可分为50对,每一对的两根关于x=23对称利用中点坐标公式,这100个根的和等于23×100=150所有101个根的和为23×101=2303.选B4.实数x,y满足x2=2xsin(xy)-1,则x1998+6sin5y=______________.解:如果x、y不是某些特殊值,则本题无法(快速)求解注意到其形式类似于一元二次方程,可以采用配方法(x-sin(xy))2+cos2(xy)=0∴x=sin(xy)且cos(xy)=0∴x=sin(xy)=±1∴siny=1xsin(xy)=1原式=75.已知x=9919是方程x4+bx2+c=0的根,b,c为整数,则b+c=__________.解:(逆向思考:什么样的方程有这样的根?)由已知变形得x-9919∴x2-219x+19=99即x2-80=219x再平方得x4-160x2+6400=76x2即x4-236x2+6400=0∴b=-236,c=6400b+c=61646.已知f(x)=ax2+bx+c(a>0),f(x)=0有实数根,且f(x)=1在(0,1)内有两个实数根,求证:a>4.证法一:由已知条件可得△=b2-4ac≥0①f⑴=a+b+c>1②f(0)=c>1③0<-a2b<1④b2≥4acb>1-a-cc>1b<0(∵a>0)于是-b≥2ac所以a+c-1>-b≥2ac∴(ca)2>1∴ca>1于是ca+1>2∴a>4证法二:设f(x)的两个根为x1,x2,则f(x)=a(x-x1)(x-x2)f⑴=a(1-x1)(1-x2)>1f(0)=ax1x2>1由基本不等式x1(1-x1)x2(1-x2)≤[41(x1+(1-x1)+x2+(1-x2))]4=(41)2∴16a2≥a2x1(1-x1)x2(1-x2)>1∴a2>16∴a>47.已知f(x)=x2+ax+b(-1≤x≤1),若|f(x)|的最大值为M,求证:M≥21.解:M=|f(x)|max=max{|f⑴|,|f(-1)|,|f(-2a)|}⑴若|-2a|≥1(对称轴不在定义域内部)则M=max{|f⑴|,|f(-1)|}而f⑴=1+a+bf(-1)=1-a+b|f⑴|+|f(-1)|≥|f⑴+f(-1)|=2|a|≥4则|f⑴|和|f(-1)|中至少有一个不小于2∴M≥2>21⑵|-2a|<1M=max{|f⑴|,|f(-1)|,|f(-2a)|}=max{|1+a+b|,|1-a+b|,|-4a2+b|}=max{|1+a+b|,|1-a+b|,|-4a2+b|,|-4a2+b|}≥41(|1+a+b|+|1-a+b|+|-4a2+b|+|-4a2+b|)≥41[(1+a+b)+(1-a+b)-(-4a2+b)-(-4a2+b)]=)2a2(412≥21综上所述,原命题正确.8.⑴解方程:(x+8)2001+x2001+2x+8=0⑵解方程:2)1x(222221)1x(1x1x4x2⑴解:原方程化为(x+8)2001+(x+8)+x2001+x=0即(x+8)2001+(x+8)=(-x)2001+(-x)构造函数f(x)=x2001+x原方程等价于f(x+8)=f(-x)而由函数的单调性可知f(x)是R上的单调递增函数于是有x+8=-xx=-4为原方程的解⑵两边取以2为底的对数得x)1xx(log)x(f)1x()1)1x(1x(logx2)1x4x2(log1x2x)1)1x(1x(log)1x4x2(log)1x(1)1x(1x1x4x2log2222222222222222222222构造函数即即于是f(2x)=f(x2+1)易证:f(x)世纪函数,且是R上的增函数,所以:2x=x2+1解得:x=19.设f(x)=x4+ax3+bx2+cx+d,f⑴=1,f⑵=2,f⑶=3,求41[f⑷+f(0)]的值.解:由已知,方程f(x)=x已知有三个解,设第四个解为m,记F(x)=f(x)-x=(x-1)(x-2)(x-3)(x-m)∴f(x)=(x-1)(x-2)(x-3)(x-m)+xf⑷=6(4-m)+4f(0)=6m∴41[f⑷+f(0)]=710.设f(x)=x4-4x3+213x2-5x+2,当x∈R时,求证:|f(x)|≥21证明:配方得:f(x)=x2(x-2)2+25(x-1)2-21=x2(x-2)2+25(x-1)2-1+21=(x2-2x)2+25(x-1)2-1+21=[(x-1)2-1]2+25(x-1)2-1+21=(x-1)4-2(x-1)2+1+25(x-1)2-1+21=(x-1)4+21(x-1)2+21≥21练习:1.已知f(x)=ax5+bsin5x+1,且f⑴=5,则f(-1)=()A.3B.-3C.5D.-5解:∵f⑴=a+bsin51+1=5设f(-1)=-a+bsin5(-1)+1=k相加:f⑴+f(-1)=2=5+k∴f(-1)=k=2-5=-3选B2.已知(3x+y)2001+x2001+4x+y=0,求4x+y的值.解:构造函数f(x)=x2001+x,则f(3x+y)+f(x)=0逐一到f(x)的奇函数且为R上的增函数,所以3x+y=-x4x+y=03.解方程:ln(1x2+x)+ln(1x42+2x)+3x=0解:构造函数f(x)=ln(1x2+x)+x则由已知得:f(x)+f(2x)=0不难知,f(x)为奇函数,且在R上是增函数(证明略)所以f(x)=-f(2x)=f(-2x)由函数的单调性,得x=-2x所以原方程的解为x=04.若函数y=log3(x2+ax-a)的值域为R,则实数a的取值范围是______________.解:函数值域为R,表示函数值能取遍所有实数,则其真数函数g(x)=x2+ax-a的函数值应该能够取遍所有正数所以函数y=g(x)的图象应该与x轴相交即△≥0∴a2+4a≥0a≤-4或a≥0解法二:将原函数变形为x2+ax-a-3y=0△=a2+4a+4·3y≥0对一切y∈R恒成立则必须a2+4a≥0成立∴a≤-4或a≥05.函数y=8x4x5x4x22的最小值是______________.提示:利用两点间距离公式处理y=2222)20()2x()10()2x(表示动点P(x,0)到两定点A(-2,-1)和B(2,2)的距离之和当且仅当P、A、B三点共线时取的最小值,为|AB|=56.已知f(x)=ax2+bx+c,f(x)=x的两根为x1,x2,a>0,x1-x2>a1,若0<t<x1,试比较f(t)与x1的大小.解法一:设F(x)=f(x)-x=ax2+(b-1)x+c,=a(x-x1)(x-x2)∴f(x)=a(x-x1)(x-x2)+x作差:f(t)-x1=a(t-x1)(t-x2)+t-x1=(t-x1)[a(t-x2)+1]=a(t-x1)(t-x2+a1)又t-x2+a1<t-(x2-x1)-x1=t-x1<0∴f(t)-x1>0∴f(t)>x1解法二:同解法一得f(x)=a(x-x1)(x-x2)+x令g(x)=a(x-x2)∵a>0,g(x)是增函数,且t<x1g(t)<g(x1)=a(x1-x2)<-1另一方面:f(t)=g(t)(t-x1)+t∴1xtt)t(f=a(t-x2)=g(t)<-1∴f(t)-t>x1-t∴f(t)>x17.f(x),g(x)都是定义在R上的函数,当0≤x≤1,0≤y≤1时.求证:存在实数x,y,使得|xy-f(x)-g(y)|≥41证明:(正面下手不容易,可用反证法)若对任意的实数x,y,都有|xy-f(x)-g(y)|<41记|S(x,y)|=|xy-f(x)-g(y)|则|S(0,0)|<41,|S(0,1)|<41,|S(1,0)|<41,|S(1,1)|<41而S(0,0)=-f(0)-g(0)S(0,1)=-f(0)-g(1)S(1,0)=-f(1)-g(0)S(1,1)=1-f(1)-g(1)∴|S(0,0)|+|S(0,1)|+|S(1,0)|+|S(1,1)|≥|S(0,0)-S(0,1)-S(1,0)+S(1,1)|=1矛盾!故原命题得证!8.设a,b,c∈R,|x|≤1,f(x)=ax2+bx+c,如果|f(x)|≤1,求证:|2ax+b|≤4.解:(本题为1914年匈牙利竞赛试题)f⑴=a+b+cf(-1)=a-b+cf(0)=c∴a=21[f⑴+f(-1)-2f(0)]b=21[f⑴-f(-1)]c=f(0)|2ax+b|=|[f⑴+f(-1)-2f(0)]x+21[f⑴-f(-1)]|=|(x+21)f⑴+(x-21)f(-1)-2xf(0)|≤|x+21||f⑴|+|x-21||f(-1)|+2|x||f(0)|≤|x+21|+|x-21|+2|x|接下来按x分别在区间[-1,-21],(-21,0),[0,21),[21,1]讨论即可9.已知函数f(x)=x3-x+c定义在[0,1]上,x1,x2∈[0,1]且x1≠x2.⑴求证:|f(x1)-f(x2)|<2|x1-x2|;⑵求证:|f(x1)-f(x2)|<1.证明:⑴|f(x1)-f(x2)|=|x13-x1+x23-x2|=|x1-x2||x12+x1x2+x22-1|需证明|x12+x1x2+x22-1|<2………………①x12+x1x2+x22=(x1+4x32x22222)≥0∴-1<x12+x1x2+x22-1<1+1+1-1=2∴①式成立于是原不等式成立⑵不妨设x2>x1由⑴|f(x1)-f(x2)|<2|x1-x2|①若x2-x1∈(0,21]则立即有|f(x1)-f(x2)|<1成立.②若1>x2-x1>21,则-1<-(x2-x1)<-21∴0<1-(x2-x1)<21(右边变为正数)下面我们证明|f(x1)-f(x2)|<2(1-x2+x1)注意到:f(0)=f⑴=f(-1)=c|f(x1)-f(x2)|=|f(x1)-f⑴+f(0)-f(x2)|≤|f(x1)-f⑴|+|f(0)-f(x2)|<2(1-x2)+2(x2-0)(由⑴)=2(1-x2+x1)<1综合⑴⑵,原命题得证.10.已知f(x)=ax2+x-a(-1≤x≤1)⑴若|a|≤1,求证:|f(x)|≤45⑵若f(x)max=817,求a的值.解:分析:首先设法去掉字母a,于是将a集中⑴若a=0,则f(x)=x,当x∈[-1,1]时,|f(x)|≤1<
本文标题:高中数学竞赛专题讲座之函数的基本性质
链接地址:https://www.777doc.com/doc-7556407 .html