您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2016年新课标Ⅱ文数高考试题
2016年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。写在本试卷上无效。3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。4.考试结束,将试题卷和答题卡一并交回。第Ⅰ卷一、选择题:本大题共12小题。每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。(1)已知集合{123}A,,,2{|9}Bxx,则AB(A){210123},,,,,(B){21012},,,,(C){123},,(D){12},(2)设复数z满足i3iz,则z=(A)12i(B)12i(C)32i(D)32i(3)函数=sin()yAx的部分图像如图所示,则(A)2sin(2)6yx(B)2sin(2)3yx(C)2sin(2+)6yx(D)2sin(2+)3yx(4)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为(A)12(B)323(C)(D)(5)设F为抛物线C:y2=4x的焦点,曲线y=kx(k0)与C交于点P,PF⊥x轴,则k=(A)12(B)1(C)32(D)2(6)圆x2+y2−2x−8y+13=0的圆心到直线ax+y−1=0的距离为1,则a=(A)−43(B)−34(C)3(D)2(7)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A)20π(B)24π(C)28π(D)32π(8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为(A)710(B)58(C)38(D)310(9)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a为2,2,5,则输出的s=(A)7(B)12(C)17(D)34(10)下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是(A)y=x(B)y=lgx(C)y=2x(D)1yx(11)函数π()cos26cos()2fxxx的最大值为(A)4(B)5(C)6(D)7(12)已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3|与y=f(x)图像的交点为(x1,y1),(x2,y2),…,(xm,ym),则1=miix(A)0(B)m(C)2m(D)4m二.填空题:共4小题,每小题5分.(13)已知向量a=(m,4),b=(3,-2),且a∥b,则m=___________.(14)若x,y满足约束条件103030xyxyx,则z=x-2y的最小值为__________(15)△ABC的内角A,B,C的对边分别为a,b,c,若4cos5A,5cos13C,a=1,则b=____________.(16)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)等差数列{na}中,34574,6aaaa(I)求{na}的通项公式;(II)设nb=[na],求数列{nb}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2(18)(本小题满分12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:学科.网随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I)记A为事件:“一续保人本年度的保费不高于基本保费”。求P(A)的估计值;(II)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(III)求续保人本年度的平均保费估计值.(19)(本小题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将DEF沿EF折到'DEF的位置.(I)证明:'ACHD;(II)若55,6,,'224ABACAEOD,求五棱锥'ABCEFD体积.(20)(本小题满分12分)已知函数()(1)ln(1)fxxxax.(I)当4a时,求曲线()yfx在1,(1)f处的切线方程;(II)若当1,x时,()0fx>,求a的取值范围.(21)(本小题满分12分)已知A是椭圆E:22143xy的左顶点,斜率为0kk>的直线交E与A,M两点,点N在E上,MANA.(I)当AMAN时,求AMN的面积(II)当AMAN时,证明:32k.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.(22)(本小题满分10分)选修4-1:几何证明选讲如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.学科.网(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,圆C的方程为22(+6)+=25xy.(Ⅰ)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是cossinxtα,ytα,ì=ïïíï=ïî(t为参数),l与C交于A,B两点,10AB=,求l的斜率.(24)(本小题满分10分)选修4-5:不等式选讲已知函数11()22fxxx=-++,M为不等式()2fx的解集.学科.网(Ⅰ)求M;(Ⅱ)证明:当a,bMÎ时,1abab++.
本文标题:2016年新课标Ⅱ文数高考试题
链接地址:https://www.777doc.com/doc-7559320 .html