您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 2.2等差数列(优秀课件)
2.2等差数列第二章数列第一课时一、数列的定义,按一定次序排成的一列数叫做数列。一般写成a1,a2,a3,…an,…如果数列{an}的第n项an与n的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。复习二、通项公式:问题3水的管理员为了保证优质鱼类有良好的生活环境,定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m)18,15.5,13,10.5,8,5.5(观察以实际问题并思考)引入问题1我们经常这样数数,从0开始,每隔5个数一次,可以得到数列?(学生试着写出来)问题2.2008年北京奥运会,女子举重共设置7个级别,其中较轻的4个级别体重组成数列(单位:kg):48,53,58,63问题4我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:本利和=本金(1+利率*存期)例如,按活期存入10000元,年利率是0.72%,那么按照单利,5年内各年末本利和分别是:如下表(假设5年既不加存款也不取款,且不扣利息税)各年末本利和(单位:元)组成了数列:10072,10144,10216,10288,10360时间年初本金(元)年末本利和(元)第1年1000010072第2年1000010144第3年1000010216第4年1000010288第5年1000010360这四个数列有何共同特征从第2项起,每一项与其前一项之差等于同一个常数。请尝试着给具有上述特征的特殊数列用数学的语言下定义交流从上述四个问题中我们得到了四个数列(1)0,5,10,15,20,25,…(2)48,53,58,63(3)18,15.5,13,10.5,8,5.(4)10072,10144,10216,10288,103601、等差数列的定义如果一个数列从第2项起,每一项与其前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示。(1)指出定义中的关键词:从第2项起等于同一个常数(2)由定义得等差数列的递推公式:1(nnaadd是常数)说明:此公式是判断、证明一个数列是否为等差数列的主要依据.每一项与其前一项的差探究练习:判断下列数列中哪些是等差数列,哪些不是?如果是,写出首项a1和公差d,如果不是,说明理由。(1)1,1,1,1,1.(2)4,7,10,13,16.(3)3,2,1,1,2,3.(4)1,2,3,4,5,6.(5)5,9,13,,41,.n、等差数列的通项公式1{}.nnaada思考:已知等差数列的首项为,公差为,求根据等差数列的定义得到21aad,21aad所以32aad,43aad,3211()2aadaddad4311(2)3aadaddad1(1)naand由此得到(2)n11na当时,上面等式两边均为,即等式也成立1(1)naand等差数列的通项公式为方法一:不完全归纳法2、等差数列的通项公式n1n{}.aaa思考:已知等差数列的首项为,公差为d,求21aad,32aad,43aad,1nnaad}1n个1(1)naand将所有等式相加得方法二累加法例1⑴求等差数列8,5,2,…的第20项.⑵-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?解:⑴由a1=8,d=5-8=-3,n=20,得a20=8+(20-1)×(-3)=-49.⑵由a1=-5,d=-9-(-5)=-4,得到这个数列的通项公式为an=-5-4(n-1).由题意得-401=-5-4(n-1),解这个关于n的方程,得n=100,即-401是这个数列的第100项.例2在等差数列{an}中,已知a5=10,a12=31,求首项a1与公差d.这是一个以a1和d为未知数的二元一次方程组,解之得:解:由题意得:a1+4d=10a1+11d=31a1=-2d=3∴这个数列的首项a1是-2,公差d=3.小结:已知数列中任意两项,可求出首项和公差,主要是联立二元一次方程组。这种题型有简便方法吗?1、已知等差数列的首项与公差,可求得其任何一项;2、在等差数列的通项公式中,a1,d,n,an四个量中知三求一.结论3.等差中项如果a,A,b成等差数列,那么A叫做a与b的等差中项.由等差中项的定义可知,a,A,b满足关系:222或abbAAaAbAa(aAb)意义:任意两个数都有等差中项,并且这个等差中项是唯一的.当a=b时,A=a=b.n{}nmaaa思考:在等差数列中,项与有何关系?4、等差数列通项公式的推广解析:由等差数列的通项公式得1(1)naand①1(1)maamd②().nmaanmd①-②得().nmaanmd.nmaadnm进一步可以得到思考:已知等差数列{an}中,a3=9,a9=3,求a12,a3n.解法一:依题意得:a1+2d=9a1+8d=3解之得a1=11d=-1∴这个数列的通项公式是:an=11-(n-1)=12-n故a12=0,a3n=12–3n.解法二:1.等差数列{an}中,a1+a5=10,a4=7,求数列{an}的公差2.2.在数列{an}中a1=1,an=an+1+4,则a10=.3.等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a等于()A.1B.-1C.-D.31115课本P40(A)1、3、(B)2作业2.2等差数列第二章数列第二课时2、等差数列的通项公式1(1).naand1、等差数列的定义1(nnaadd是常数).3、等差数列的中项2abA复习通项公式的证明及推广m(nm).naad用一下例2.某出租车的计价标准为1.2元/km,起步价为10元,即最初的4km(不含4千米)计费10元。如果某人乘坐该市的出租车去往14km处的目的地,且一路畅通,等候时间为0,需要支付多少车费?例3、已知数列{na}的通项公式qpnan,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?解:])1([)(1qnpqpnaannpqppnqpn)(为常数∴{na}是等差数列首项qpa1,公差为p。(napnqpq已知数列的通项公式是其中,是常数),那么这个数列是否一定是等思考:差数列?11{}2)()[(1)]().{}nnnnnnaaanaapnqpnqpnqpnpqpna取数列中的任意相邻两项与(,这是一个与无关的常数,所以是等差数列.5、等差数列的通项及图象特征napnq等差数列的通项公式可反之:以表示为吗?解析:111(1)(),,.nnaanddnadpdqadapnq设,则思考n等差数列的通项公式是关于的形式,反之一次亦成立。结论:一条其直图象线为落在上的点。首项是1,公差是2的无穷等差数列的通项公式为an=2n-1相应的图象是直线y=2x-1上均匀排开的无穷多个孤立的点,如右图例如:性质:设若则*m,n,p,qNmnpqaaaa.mnpq,111111(1)(1)2()2,(1)(1)2()2,.mnpqmnpqaaamdandanmddaaapdaqdapqddaaaa证明:等差数列的性质数列{an}是等差数列,m、n、p、q∈N+,且m+n=p+q,,则am+an=ap+aq。7153aaa(1)a83641aaaa(2)a732651aaaaa(3)a45433aaa(4)a35434aaa(5)a判断:可推广到三项,四项等注意:等式两边作和的项数必须一样多123121knknnnaaaaaaaa564n求a10,aa}为等差数列,练习1:已知{an18131810练习3:已知{a}为等差数列,aaaa100,求a12an14815313练习2:已知{a}为等差数列,aaaa2,求a+a(2)已知等差数列{an}中,a3和a15是方程x2-6x-1=0的两个根,则a7+a8+a9+a10+a11=(3)已知等差数列{an}中,a3+a5=-14,2a2+a6=-15,则a8=跟踪训练(1)已知等差数列{an}中,5102,12,aa15求a6,n5814(4):已知{a}为等差数列,aa15,求a求数列通项公式21,aaa9,aaa}为等差数列,:已知{a变式753852n2d,求a187,aa56,aaaa}为等差数列,变式1:已知{a1747654n3.更一般的情形,an=,d=小结:1.{an}为等差数列2.a、b、c成等差数列an+1-an=dan+1=an+dan=a1+(n-1)dan=kn+b(k、b为常数)am+(n-m)dmnaamnb为a、c的等差中项AA2cab2b=a+c4.在等差数列{an}中,由m+n=p+qam+an=ap+aq注意:上面的命题的逆命题是不一定成立的;5.在等差数列{an}中a1+ana2+an-1a3+an-2…===2{}{}ABCD1-nnnnnnnnnnabbabababa思考:已知数列是等差数列,则数列为等差数列的是()、、、、D30083+5×(n-1)500巩固练习1.等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a等于()A.1B.-1C.-D.311152.在数列{an}中a1=1,an=an+1+4,则a10=.(-3a-5)-(a-6)=(-10a-1)-(-3a-5)提示:提示:d=an+1-an=-43.在等差数列{an}中a1=83,a4=98,则这个数列有多少项在300到500之间?-35提示:52845244nn=45,46,…,8440例4例5已知三个数成等差数列,它们的和是12,积是48,求这三个数.()()12()()48adaadadaad解:设三个数为a-d,a,a+d,则解之得42ad故所求三数依次为2,4,6或6,4,2例6如图,三个正方形的边AB,BC,CD的长组成等差数列,且AD=21cm,这三个正方形的面积之和是179cm2.(1)求AB,BC,CD的长;(2)以AB,BC,CD的长为等差数列的前三项,以第9项为边长的正方形的面积是多少?ADCB3,7,11a9=35S9=12255、等差数列的性质已知数列为等差数列,那么有n{a}性质1:若成等差数列,则成等差数列*m,p,n(m,p,nN)mpna,a,a证明:根据等差数列的定义,m,p,n,成等差数列pmnp,(pm)d(np)d.pmnpaaaa.即成等差数列.mpna,a,a如成等差数列,成等差数列.1611a,a,a369a,a,a推广:在等差数列有规律地取出若干项,所得新数列仍然为等差数列。(如奇数项,项数是7的倍数的项)性质2:设若则*m,n,p,qNmnpqaaaa.mnpq,性质3:设c,b为常数,若数列为等差数列,则数列及为等差数列.{}na{}nab{}ncab性质4:设p,q为常数,若数列、均为等差数列,则数列为等差数列.{}na{}nnpaqbn{b}111111(1)(1)2()2,(1)(1)2()2,.mnpqmnpqaaamdandanmddaaapdaqdapqddaaaa证明:564n求a10,aa}
本文标题:2.2等差数列(优秀课件)
链接地址:https://www.777doc.com/doc-7675655 .html