您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 随机变量及其分布列.版块二.几类典型的随机分布3.学生版
Gothedistance1.离散型随机变量及其分布列⑴离散型随机变量如果在试验中,试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化的,我们把这样的变量X叫做一个随机变量.随机变量常用大写字母,,XY表示.如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.⑵离散型随机变量的分布列将离散型随机变量X所有可能的取值ix与该取值对应的概率ip(1,2,,)in列表表示:X1x2x…ix…nxP1p2p…ip…np我们称这个表为离散型随机变量X的概率分布,或称为离散型随机变量X的分布列.2.几类典型的随机分布⑴两点分布如果随机变量X的分布列为X10Ppq其中01p,1qp,则称离散型随机变量X服从参数为p的二点分布.二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X为任意抽取一件产品得到的结果,则X的分布列满足二点分布.X10P0.80.2两点分布又称01分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布.⑵超几何分布一般地,设有总数为N件的两类物品,其中一类有M件,从所有物品中任取n件()nN≤,这n件中所含这类物品件数X是一个离散型随机变量,它取值为m时的概率为CC()CmnmMNMnNPXm(0ml≤≤,l为n和M中较小的一个).我们称离散型随机变量X的这种形式的概率分布为超几何分布,也称X服从参数为N,知识内容二项分布GothedistanceM,n的超几何分布.在超几何分布中,只要知道N,M和n,就可以根据公式求出X取不同值时的概率()PXm,从而列出X的分布列.⑶二项分布1.独立重复试验如果每次试验,只考虑有两个可能的结果A及A,并且事件A发生的概率相同.在相同的条件下,重复地做n次试验,各次试验的结果相互独立,那么一般就称它们为n次独立重复试验.n次独立重复试验中,事件A恰好发生k次的概率为()C(1)kknknnPkpp(0,1,2,,)kn.2.二项分布若将事件A发生的次数设为X,事件A不发生的概率为1qp,那么在n次独立重复试验中,事件A恰好发生k次的概率是()CkknknPXkpq,其中0,1,2,,kn.于是得到X的分布列X01…k…nP00Cnnpq111Cnnpq…Ckknknpq…0Cnnnpq由于表中的第二行恰好是二项展开式001110()CCCCnnnkknknnnnnnqppqpqpqpq各对应项的值,所以称这样的散型随机变量X服从参数为n,p的二项分布,记作~(,)XBnp.二项分布的均值与方差:若离散型随机变量X服从参数为n和p的二项分布,则()EXnp,()Dxnpq(1)qp.⑷正态分布1.概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X,则这条曲线称为X的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X落在指定的两个数ab,之间的概率就是对应的曲边梯形的面积.2.正态分布⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布.服从正态分布的随机变量叫做正态随机变量,简称正态变量.正态变量概率密度曲线的函数表达式为22()21()2πxfxe,xR,其中,是参数,且0,.式中的参数和分别为正态变量的数学期望和标准差.期望为、标准差为的正态分布通常记作2(,)N.正态变量的概率密度函数的图象叫做正态曲线.⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布.⑶重要结论:①正态变量在区间(,),(2,2),(3,3)内,取值的概率分别是68.3%,95.4%,99.7%.x=μOyxGothedistance②正态变量在(),内的取值的概率为1,在区间(33),之外的取值的概率是0.3%,故正态变量的取值几乎都在距x三倍标准差之内,这就是正态分布的3原则.⑷若2~()N,,()fx为其概率密度函数,则称()()()xFxPxftdt≤为概率分布函数,特别的,2~(01)N,,称221()2txxedtπ为标准正态分布函数.()()xPx.标准正态分布的值可以通过标准正态分布表查得.分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可.3.离散型随机变量的期望与方差1.离散型随机变量的数学期望定义:一般地,设一个离散型随机变量X所有可能的取的值是1x,2x,…,nx,这些值对应的概率是1p,2p,…,np,则1122()nnExxpxpxp,叫做这个离散型随机变量X的均值或数学期望(简称期望).离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平.2.离散型随机变量的方差一般地,设一个离散型随机变量X所有可能取的值是1x,2x,…,nx,这些值对应的概率是1p,2p,…,np,则2221122()(())(())(())nnDXxExpxExpxExp叫做这个离散型随机变量X的方差.离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小(离散程度).()DX的算术平方根()Dx叫做离散型随机变量X的标准差,它也是一个衡量离散型随机变量波动大小的量.3.X为随机变量,ab,为常数,则2()()()()EaXbaEXbDaXbaDX,;4.典型分布的期望与方差:⑴二点分布:在一次二点分布试验中,离散型随机变量X的期望取值为p,在n次二点分布试验中,离散型随机变量X的期望取值为np.⑵二项分布:若离散型随机变量X服从参数为n和p的二项分布,则()EXnp,()Dxnpq(1)qp.⑶超几何分布:若离散型随机变量X服从参数为NMn,,的超几何分布,则()nMEXN,2()()()(1)nNnNMMDXNN.4.事件的独立性如果事件A是否发生对事件B发生的概率没有影响,即(|)()PBAPB,这时,我们称两个事件A,B相互独立,并把这两个事件叫做相互独立事件.如果事件1A,2A,…,nA相互独立,那么这n个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()nnPAAAPAPAPA,并且上式中任意多个事件iA换成其对立事件后等式仍成立.Gothedistance5.条件概率对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号“(|)PBA”来表示.把由事件A与B的交(或积),记做DAB(或DAB).二项分布的概率计算【例1】已知随机变量服从二项分布,1~(4)3B,,则(2)P等于.【例2】甲乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3:1的比分获胜的概率为()A.827B.6481C.49D.89【例3】某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率.(用数值表示)【例4】某人参加一次考试,4道题中解对3道则为及格,已知他的解题正确率为0.4,则他能及格的概率为_________(保留到小数点后两位小数)【例5】接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为.(精确到0.01)【例6】从一批由9件正品,3件次品组成的产品中,有放回地抽取5次,每次抽一件,求恰好抽到两次次品的概率(结果保留2位有效数字).典例分析Gothedistance【例7】一台X型号的自动机床在一小时内不需要人照看的概为0.8000,有四台这种型号的自动机床各自独立工作,则在一小时内至多有2台机床需要工人照看的概率是()A.0.1536B.0.1808C.0.5632D.0.9728【例8】设在4次独立重复试验中,事件A发生的概率相同,若已知事件A至少发生一次的概率等于6581,求事件A在一次试验中发生的概率.【例9】我舰用鱼雷打击来犯的敌舰,至少有2枚鱼雷击中敌舰时,敌舰才被击沉.如果每枚鱼雷的命中率都是0.6,当我舰上的8个鱼雷发射器同是向敌舰各发射l枚鱼雷后,求敌舰被击沉的概率(结果保留2位有效数字).【例10】某厂生产电子元件,其产品的次品率为5%,现从一批产品中的任意连续取出2件,求次品数的概率分布列及至少有一件次品的概率.Gothedistance【例11】某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是12.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助.求:⑴该公司的资助总额为零的概率;⑵该公司的资助总额超过15万元的概率.【例12】某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.⑴求3位购买该商品的顾客中至少有1位采用一次性付款的概率;⑵求3位位顾客每人购买1件该商品,商场获得利润不超过650元的概率.【例13】某万国家具城进行促销活动,促销方案是:顾客每消费1000元,便可获得奖券一张,每张奖券中奖的概率为15,若中奖,则家具城返还顾客现金200元.某顾客消费了3400元,得到3张奖券.⑴求家具城恰好返还该顾客现金200元的概率;⑵求家具城至少返还该顾客现金200元的概率.Gothedistance【例14】某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为56和45,且各株大树是否成活互不影响.求移栽的4株大树中:⑴至少有1株成活的概率;⑵两种大树各成活1株的概率.【例15】一个口袋中装有n个红球(5n≥且*nN)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.⑴试用n表示一次摸奖中奖的概率p;⑵若5n,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;⑶记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P.当n取多少时,P最大?【例16】袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是13,从B中摸出一个红球的概率为p.⑴从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.①求恰好摸5次停止的概率;②记5次之内(含5次)摸到红球的次数为,求随机变量的分布.⑵若AB,两个袋子中的球数之比为1:2,将AB,中的球装在一起后,从中摸出一个红球的概率是25,求p的值.Gothedistance【例17】设飞机A有两个发动机,飞机B有四个发动机,如有半数或半数以上的发动机没有故障,就能够安全飞行,现设各个发动机发生故障的概率p是t的函数1tpe,其中t为发动机启动后所经历的时间,为正的常数,试讨论飞机A与飞机B哪一个安全?(这里不考虑其它故障).【例18】假设飞机的每一台发动机在飞行中的故障率都是1P,且各发动机互不影响.如果至少50%的发动机能正常运行,飞机就可以顺利地飞行.问对于多大的P而言,四发动机飞机比二发动机飞机更安全?【例19】一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13.⑴设为这名学生在途中遇到红灯的次数,求的分布列;⑵设为这名学生在首次停车前经过的路口数,求的分布列;⑶求这名学生在途中至少遇到一次红灯的概率.Gothedistance【例20】一个质地不均匀的硬币抛掷5次,正面向上恰为1次的可能性不为0,而且与
本文标题:随机变量及其分布列.版块二.几类典型的随机分布3.学生版
链接地址:https://www.777doc.com/doc-7708679 .html