您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高考数学普通高等学校招生全国统一考试11
aa阿aa阿aa阿aa阿ba阿ba阿ba阿ba阿O阿O阿O阿O阿(A)(B)(C)(D)高考数学普通高等学校招生全国统一考试11数学试题第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果函数abxaxy2的图象与x轴有两上交点,则点(a,b)在aOb平面上的区域(不包含边界)为()2.抛物线2axy的准线方程是y=2,则a的值为()A.81B.-81C.8D.-83.已知xxx2tan,54cos),0,2(则()A.247B.-247C.724D.-7244.设函数,1)(.0,,0,12)(021xfxxxxfx若则x0的取值范围是()A.(-1,1)B.(-1,+∞)C.(-∞,-2)∪(0,+∞)D.(-∞,-1)∪(1,+∞)5.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足),,0[),||||(ACACABABOAOP则P的轨迹一定通过△ABC的()A.外心B.内心C.重心D.垂心6.函数),1(,11lnxxxy的反函数为()A.),0(,11xeeyxxB.),0(,11xeeyxxC.)0,(,11xeeyxxD.)0,(,11xeeyxx7.棱长为a的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为()A.33aB.43aC.63aD.123a8.设,)(,02cbxaxxfa曲线)(xfy在点))(,(00xfxP处切线的倾斜角的取值范围为]4,0[,则P到曲线)(xfy对称轴距离的取值范围为()A.[a1,0]B.]21,0[aC.|]2|,0[abD.|]21|,0[ab9.已知方程0)2)(2(22nxxmxx的四个根组成一个首项为41的等差数列,则|m-n|=()A.1B.43C.21D.8310.已知双曲线中心在原点且一个焦点为F(7,0)直线y=x-1与其相交于M、N两点,MN中点的横坐标为32,则此双曲线的方程是()A.14322yxB.13422yxC.12522yxD.15222yx11.已知长方形四个顶点A(0,0),B(2,0),C(2,1)和D(0,1).一质点从AB的中点P0沿与AB夹角为θ的方向射到BC上的点P1后,依次反射到CD、DA和AB上的点P2、P3和P4(入射角等于反射角).设P4的坐标为(x4,0).若1x42,则tanθ的取值范围是()A.)1,31(B.)32,31(C.)21,52(D.)32,52(12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为()A.3πB.4πC.33πD.6π第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,把答案填在题中横线上.13.92)21(xx展开式中x9的系数是.14.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取,,辆.15.某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有种.(以数字作答)16.对于四面体ABCD,给出下列四个命题①若AB=AC,BD=CD,则BC⊥AD.②若AB=CD,AC=BD,则BC⊥AD.③若AB⊥AC,BD⊥CD,则BC⊥AD.④若AB⊥CD,BD⊥AC,则BC⊥AD.其中真命题的序号是.(写出所有真命题的序号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)有三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验.(Ⅰ)求恰有一件不合格的概率;(Ⅱ)求至少有两件不合格的概率.(精确到0.001)18.(本小题满分12分)已知函数)0,0)(sin()(xxf上R上的偶函数,其图象关于点)0,43(M对称,且在区间]2,0[上是单调函数,求和ω的值.19.(本小题满分12分)如图,直三棱柱ABC—A1B1C1中,底面是等腰直角三角形,∠ACB=90°,侧棱AA1=2,D、E分别是CC1与A1B的中点,点E在平面ABD上的射影是△ABD的垂心G.(Ⅰ)求A1B与平面ABD所成角的大小(结果用反三角函数值表示);(Ⅱ)求点A1到平面AED的距离.DEKBC1A1B1AFCG20.(本小题满分12分)已知常数0a,向量).0,1(),,0(iac经过原点O以ic为方向向量的直线与经过定点A(0,a)以ci2为方向向量的直线相交于点P,其中.R试问:是否存在两个定点E、F,使得|PE|+|PF|为定值.若存在,求出E、F的坐标;若不存在,说明理由.21.(本小题满分12分)已知na,0为正整数.(Ⅰ)设1)(,)(nnaxnyaxy证明;(Ⅱ)设).()1()1(,,)()(1nfnnfanaxxxfnnnnn证明对任意22.(本小题满分14分)设,0a如图,已知直线axyl:及曲线C:2xy,C上的点Q1的横坐标为1a(aa10).从C上的点Qn(n≥1)作直线平行于x轴,交直线l于点1nP,再从点1nP作直线平行于y轴,交曲线C于点Qn+1.Qn(n=1,2,3,…)的横坐标构成数列.na(Ⅰ)试求nnaa与1的关系,并求na的通项公式;(Ⅱ)当21,11aa时,证明nkkkkaaa121321)(;(Ⅲ)当a=1时,证明nkkkkaaa121.31)(OcylxQ1Q2Q31aa12aa23aa3r2r1普通高等学校招生全国统一考试11数学试题答案一、选择题:本题考查基本知识和基本运算,每小题5分,满分60分.1.C2.B3.D4.D5.B6.B7.C8.B9.C10.D11.C12.A二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.13.22114.6,30,1015.12016.①④三、解答题17.本小题要主考查相互独立事件概率的计算,运用数学知识解决问题的能力,满分12分.解:设三种产品各抽取一件,抽到合格产品的事件分别为A、B和C.(Ⅰ)95.0)()(,90.0)(CPBPAP,.50.0)()(,10.0)(CPBPAP因为事件A,B,C相互独立,恰有一件不合格的概率为176.095.095.010.005.095.090.02)()()()()()()()()()()()(CPBPAPCPBPAPCPBPAPCBAPCBAPCBAP答:恰有一件不合格的概率为0.176.解法一:至少有两件不合格的概率为)()()()(CBAPCBAPCBAPCBAP012.005.010.095.005.010.0205.090.022解法二:三件产品都合格的概率为812.095.090.0)()()()(2CPBPAPCBAP由(Ⅰ)知,恰有一件不合格的概率为0.176,所以至有两件不合格的概率为.012.0)176.0812.0(1]176.0)([1CBAP答:至少有两件不合的概率为0.012.(18)在小题主要考查三角函数的图象和单调性、奇偶性等基本知识,以及分析问题和推理计算能力,满12分分。解:由),()(,)(xfxfxf得是偶函数.0cos,0,sincossincos),sin()sin(所以得且都成立对任意所以即xxxxx.232,;]2,0[)2sin()(,310,0;]2,0[)22sin()(,2,1;]2,0[)232sin()(,32,0.,2,1,0),12(32,,3,2,1,243,0,043cos,43cos)243sin()43(,43cos)243sin()43(,0),43()43(,)(.2,0或综合得所以上不是单调函数在时当上是减函数在时当上是减函数在时当得又得取得对称的图象关于点由所以解得依题设xxfkxxfkxxfkkkkkffxxfxfMxf19.本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力.满分12分.解法一:(Ⅰ)解:连结BG,则BG是BE在面ABD的射影,即∠EBG是A1B与平面ABD所成的角.设F为AB中点,连结EF、FC,.32arcsin.323136sin.3,32,22,2.36321,2.3,1,31.,,,,,,112211所成的角是与平面于是中在直角三角形的重心是连结为矩形平面又的中点分别是ABDBAEBEGEBGEBBAABCDFCEGEDFDEFFDFDFGEFEFDDFGADBGDECDEFABCDCBACCED(Ⅱ)连结A1D,有EAADAEDAVV11,,,FABEFEFEDABED又ABAED1平面,设A1到平面AED的距离为h,则EDShSABAAED1.2621,24121111EDAESABAASSAEDABAAEA又.362.36226221的距离为到平面即AEDAh解法二:(Ⅰ)连结BG,则BG是BE在面ABD的射影,即∠A1BG是A1B与平ABD所成的角.如图所示建立坐标系,坐标原点为O,设CA=2a,则A(2a,0,0),B(0,2a,0),D(0,0,1).37arccos.372131323/14||||cos).31,34,32(),2,2,2(.1.03232).1,2,0(),32,3,3().31,32,32(),1,,(),2,0,2(1111121所成角是与平面解得ABDBABGBABGBABGABGBAaaBDGEaBDaaCEaaGaaEaA(Ⅱ)由(Ⅰ)有A(2,0,0)A1(2,0,2),E(1,1,1),D(0,0,1).,,0)0,1,1()2,0,0(,0)0,1,1()1,1,1(11AEDEDEAAEDEDAAEDAE平面又平面(Ⅰ)当22a时,方程①是圆方程,故不存在合乎题意的定点E和F;(Ⅱ)当220a时,方程①表示椭圆,焦点)2,2121()2,2121(22aaFaaE和(Ⅲ)当,22时a方程①也表示椭圆,焦点))21(21,0())21(21,0(22aaFaaE和为合乎题意的两个定点.(21)本小题主要考查导数、不等式证明等知识,考查综合运用所数学知识解决问题的能力,满分12分.证明:(Ⅰ)因为nkknnCax0)(kknxa)(,所以10)(kknnkknxakCynkn0.)()(1111nkknknaxnxaC(Ⅱ)对函数nnnaxxxf)()(求导数:nnnnnnnnnnnnnnannannanxaxxxfaxxfaxannnnfaxnnxxf)()1()1(,,.)()(,.0)(,0].)([)(,)()(1111时当因此的增函数是关于时当时当所以∴))()(1(])1()1)[(1()1(1nnnnnannnannnnf).()1())()(1(1nfnannnnnnn
本文标题:高考数学普通高等学校招生全国统一考试11
链接地址:https://www.777doc.com/doc-7779771 .html