您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2007年全国高中数学联合竞赛加试试题及参考答案
梦幻网络()数百万免费课件下载,试题下载,教案下载,论文范文,计划总结梦幻网络()——最大的免费教育资源网站2007年全国高中数学联合竞赛加试试卷(考试时间:上午10:00—12:00)一、(本题满分50分)如图,在锐角△ABC中,ABAC,AD是边BC上的高,P是线段AD内一点。过P作PE⊥AC,垂足为E,做PF⊥AB,垂足为F。O1、O2分别是△BDF、△CDE的外心。求证:O1、O2、E、F四点共圆的充要条件为P是△ABC的垂心。二、(本题满分50分)如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子。如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连。现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线(横、竖、斜方向)上依次相连。问最少取出多少个棋子才可能满足要求?并说明理由。三、(本题满分50分)设集合P={1,2,3,4,5},对任意k∈P和正整数m,记f(m,k)=5111iikm,其中[a]表示不大于a的最大整数。求证:对任意正整数n,存在k∈P和正整数m,使得f(m,k)=n。2007年全国高中数学联合竞赛加试试题参考答案一、(本题满分50分)如图,在锐角△ABC中,ABAC,AD是边BC上的高,P是线段AD内一点。过P作PE⊥AC,垂足为E,作PF⊥AB,垂足为F。O1、O2分别是△BDF、△CDE的外心。求证:O1、O2、E、F四点共圆的充要条件为P是△ABC的垂心。证明:连结BP、CP、O1O2、EO2、EF、FO1。因为PD⊥BC,PF⊥AB,故B、D、P、F四点共圆,且BP为该圆的直径。又因为O1是△BDF的外心,故O1在BP上且是BP的中点。同理可证C、D、P、E四点共圆,且O2是的CP中点。综合以上知O1O2∥BC,所以∠PO2O1=∠PCB。因为AF·AB=AP·AD=AE·AC,所以B、C、E、F四点共圆。充分性:设P是△ABC的垂心,由于PE⊥AC,PF⊥AB,所以B、O1、P、E四点共线,C、O2、P、F四点共线,∠FO2O1=∠FCB=∠FEB=∠FEO1,故O1、O2、E、F四点共圆。必要性:设O1、O2、E、F四点共圆,故∠O1O2E+∠EFO1=180°。由于∠PO2O1=∠PCB=∠ACB−∠ACP,又因为O2是直角△CEP的斜边中点,也就是△CEP的外心,所以∠PO2E=2∠ACP。因为O1是直角△BFP的斜边中点,也就是△BFP的外心,从而∠PFO1=90°−∠BFO1=90°−∠ABP。因为B、C、E、F四点共圆,所以∠AFE=∠ACB,∠PFE=90°−∠ACB。于是,由∠O1O2E+∠EFO1=180°得(∠ACB−∠ACP)+2∠ACP+(90°−∠ABP)+(90°−∠ACB)=180°,即∠ABP=∠ACP。又因为ABAC,AD⊥BC,故BDCD。设B'是点B关于直线AD的对称点,则B'在线段DC上且B'D=BD。连结AB'、PB'。由对称性,有∠AB'P=∠ABP,从而∠AB'P=∠ACP,所以A、P、B'、C四点共圆。由此可知∠PB'B=∠CAP=90°−∠ACB。因为∠PBC=∠PB'B,故∠PBC+∠ACB=(90°−∠ACB)+∠ACB=90°,故直线BP和AC垂直。由题设P在边BC的高上,所以P是△ABC的垂心。二、(本题满分50分)如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子。如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连。现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线(横、竖、斜方向)上依次相连。问最少取出多少个棋子才可能满足要求?并说明理由。O2O1FEPDABCB'O2O1FEPDABC梦幻网络()数百万免费课件下载,试题下载,教案下载,论文范文,计划总结梦幻网络()——最大的免费教育资源网站解:最少要取出11个棋子,才可能满足要求。其原因如下:如果一个方格在第i行第j列,则记这个方格为(i,j)。第一步证明若任取10个棋子,则余下的棋子必有一个五子连珠,即五个棋子在一条直线(横、竖、斜方向)上依次相连。用反证法。假设可取出10个棋子,使余下的棋子没有一个五子连珠。如图1,在每一行的前五格中必须各取出一个棋子,后三列的前五格中也必须各取出一个棋子。这样,10个被取出的棋子不会分布在右下角的阴影部分。同理,由对称性,也不会分布在其他角上的阴影部分。第1、2行必在每行取出一个,且只能分布在(1,4)、(1,5)、(2,4)、(2,5)这些方格。同理(6,4)、(6,5)、(7,4)、(7,5)这些方格上至少要取出2个棋子。在第1、2、3列,每列至少要取出一个棋子,分布在(3,1)、(3,2)、(3,3)、(4,1)、(4,2)、(4,3)、(5,1)、(5,2)、(5,3)所在区域,同理(3,6)、(3,7)、(3,8)、(4,6)、(4,7)、(4,8)、(5,6)、(5,7)、(5,8)所在区域内至少取出3个棋子。这样,在这些区域内至少已取出了10个棋子。因此,在中心阴影区域内不能取出棋子。由于①、②、③、④这4个棋子至多被取出2个,从而,从斜的方向看必有五子连珠了。矛盾。图1图2第二步构造一种取法,共取走11个棋子,余下的棋子没有五子连珠。如图2,只要取出有标号位置的棋子,则余下的棋子不可能五子连珠。综上所述,最少要取走11个棋子,才可能使得余下的棋子没有五子连珠。三、(本题满分50分)设集合P={1,2,3,4,5},对任意k∈P和正整数m,记f(m,k)=5111iikm,其中[a]表示不大于a的最大整数。求证:对任意正整数n,存在k∈P和正整数m,使得f(m,k)=n。证明:定义集合A={1km|m∈N*,k∈P},其中N*为正整数集。由于对任意k、i∈P且k≠i,11ik是无理数,则对任意的k1、k2∈P和正整数m1、m2,112211kmkm当且仅当m1=m2,k1=k2。由于A是一个无穷集,现将A中的元素按从小到大的顺序排成一个无穷数列。对于任意的正整数n,设此数列中第n项为1km。下面确定n与m、k的关系。若111kmim,则111ikmm。由m1是正整数可知,对i=1,2,3,4,5,满足这个条件的m1的个数为11ikm。从而n=5111iikm=f(m,k)。因此对任意n∈N*,存在m∈N*,k∈P,使得f(m,k)=n。欢迎访问
本文标题:2007年全国高中数学联合竞赛加试试题及参考答案
链接地址:https://www.777doc.com/doc-7781846 .html