您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 安徽数学高考题(理科)
绝密★启用前2010年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至第2页,第II卷第3至第4页。全卷满分150分钟,考试时间120分钟。考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。务必在答题卡背面规定的地方填写姓名和座位号后两位。2.答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡...上书写,要求字体工整、笔迹清晰。作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上答题无效........。4.考试结束,务必将试题卷和答题卡一并上交。参考公式:如果事件A与B互斥,那么PABPAPB如果事件A与B相互独立,那么PABPAPB如果A与B是两个任意事件,0PA,那么|PABPAPBA第Ⅰ卷(选择题,共50分)一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。1、i是虚数单位,33iiA、13412iB、13412iC、1326iD、1326i2、若集合121log2Axx,则ARðA、2(,0],2B、2,2C、2(,0][,)2D、2[,)23、设向量1,0a,11,22b,则下列结论中正确的是A、abB、22abC、ab与b垂直D、a∥b4、若fx是R上周期为5的奇函数,且满足11,22ff,则34ffA、-1B、1C、-2D、25、双曲线方程为2221xy,则它的右焦点坐标为A、2,02B、5,02C、6,02D、3,06、设0abc,二次函数2fxaxbxc的图象可能是A、B、C、D、7、设曲线C的参数方程为23cos13sinxy(为参数),直线l的方程为320xy,则曲线C上到直线l距离为71010的点的个数为A、1B、2C、3D、48、一个几何体的三视图如图,该几何体的表面积为A、280B、292C、360D、3729、动点,Axy在圆221xy上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周。已知时间0t时,点A的坐标是13(,)22,则当012t时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是A、0,1B、1,7C、7,12D、0,1和7,1210、设na是任意等比数列,它的前n项和,前2n项和与前3n项和分别为,,XYZ,则下列等式中恒成立的是A、2XZYB、YYXZZXC、2YXZD、YYXXZX第Ⅱ卷(非选择题,共90分)二、填空题:本大题共5小题,每小题5分,共25分,将答案填在答题卡中的相应位置。11、命题“对任何xR,243xx”的否定是________。12、6xyyx展开式中,3x的系数等于________。13、设,xy满足约束条件2208400,0xyxyxy,若目标函数0,0zabxyab的最大值为8,则ab的最小值为________。14、如图所示,程序框图(算法流程图)的输出值x________。15、甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球。先从甲罐中随机取出一球放入乙罐,分别以12,AA和3A表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号)。①25PB;②15|11PBA;③事件B与事件1A相互独立;④123,,AAA是两两互斥的事件;⑤PB的值不能确定,因为它与123,,AAA中空间哪一个发生有关三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤。解答写在答题卡上的指定区域内。16、(本小题满分12分)设ABC是锐角三角形,,,abc分别是内角,,ABC所对边长,并且22sinsin()sin()sin33ABBB。(Ⅰ)求角A的值;(Ⅱ)若12,27ABACa,求,bc(其中bc)。17、(本小题满分12分)设a为实数,函数22,xfxexaxR。(Ⅰ)求fx的单调区间与极值;(Ⅱ)求证:当ln21a且0x时,221xexax。18、(本小题满分12分)如图,在多面体ABCDEF中,四边形ABCD是正方形,EF∥AB,EFFB,2ABEF,90BFC,BFFC,H为BC的中点。ABCDEFH(Ⅰ)求证:FH∥平面EDB;(Ⅱ)求证:AC平面EDB;(Ⅲ)求二面角BDEC的大小。19、(本小题满分13分)已知椭圆E经过点2,3A,对称轴为坐标轴,焦点12,FF在x轴上,离心率12e。(Ⅰ)求椭圆E的方程;(Ⅱ)求12FAF的角平分线所在直线l的方程;(Ⅲ)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由。20、(本小题满分12分)设数列12,,,,naaa中的每一项都不为0。证明:na为等差数列的充分必要条件是:对任何nN,都有1223111111nnnnaaaaaaaa。21、(本小题满分13分)品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序,这称为一轮测试。根据一轮测试中的两次排序的偏离程度的高低为其评为。现设4n,分别以1234,,,aaaa表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令12341234Xaaaa,则X是对两次排序的偏离程度的一种描述。(Ⅰ)写出X的可能值集合;(Ⅱ)假设1234,,,aaaa等可能地为1,2,3,4的各种排列,求X的分布列;(Ⅲ)某品酒师在相继进行的三轮测试中,都有2X,(i)试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);(ii)你认为该品酒师的酒味鉴别功能如何?说明理由。
本文标题:安徽数学高考题(理科)
链接地址:https://www.777doc.com/doc-7804371 .html