您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】绥化市安达市2014-2015学年八年级下期末数学试卷
2014-2015学年黑龙江省绥化市安达市八年级(下)期末数学试卷一.选择题(共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题意的)1.下列计算正确的是()A.=2B.()2=4C.×=D.÷=32.下列二次根式中,最简二次根式是()A.B.C.D.3.由线段a,b,c组成的三角形是直角三角形的是()A.a=1,b=1,c=2B.a=,b=1,c=1C.a=4,b=5,c=6D.a=1,b=2,c=4.三角形的三边长分别为6,8,10,它的最长边上的高为()A.6B.2.4C.8D.4.85.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()A.108°B.72°C.90°D.100°6.下面在平面直角坐标系中所给的四个图象中,是函数图象的是()A.B.C.D.7.如图,由9个全等的等边三角形拼成一个几何图案,这个图案中共有平行四边形()A.15个B.14个C.13个D.12个8.在平面直角坐标系中,点P(x,﹣x+3)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限9.直角三角形两边的长分别为3和4,则此直角三角形斜边上的中线长为()A.5和4B.2.5和2C.5D.210.如图,现有一长方体的实心木块,有一蚂蚁从A处出发沿长方体表面爬行到C′处,若长方体的长AB=4cm,宽BC=3cm,高BB′=2cm,则蚂蚁爬行的最短路径是()A.cmB.cmC.cmD.7cm二.填空题(共10小题,每小题3分,共30分)11.若式子在实数范围内有意义,则x的取值范围是.12.计算等于.13.已知等腰三角形的周长为24cm,设腰长为x(cm),底边长为y(cm),写出y关x函数解析式及自变量x的取值范围.14.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=4,则图中阴影部分的面积为.15.已知点A(a,﹣2),B(b,﹣4)在直线y=﹣x+6上,则a、b的大小关系是ab.16.如图,在△ABC中,AB=AC=8cm,D是BC上任意一点,DE∥AB,DF∥AC,F、E分别在AB、AC上,则平行四边形AFDE的周长为cm.17.五个正整数,中位数是4,众数是6,则这五个正整数的平均数是.18.在△ABC中,AB=AC=13,BC=10,则△ABC的面积为.19.将直线y=2x﹣4向右平移5个单位后,所得直线的表达式是.20.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A2015的坐标是.三.解答题(满分60分)21.计算(1)(2).22.如图,在△ABC中,∠C=90°,∠A=30°,BC=,求AC的长.23.甲、乙两台机床同时加工直径为10mm的同种规格零件,为了检查两台机床加工零件的稳定性,质检员从两台机床的产品中各抽取5件进行检测,结果如下(单位:mm):甲109.81010.210乙9.9101010.110(1)分别求出这两台机床所加工零件直径的平均数和方差;(2)根据所学的统计知识,你认为哪一台机床生产零件的稳定性更好一些,说明理由.24.已知:如图,AE∥BF,AC平分∠BAD,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.求证:四边形ABCD是菱形.25.以下是小辰同学阅读的一份材料和思考:五个边长为1的小正方形如图①放置,用两条线段把它们分割成三部分(如图②),移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的新正方形(如图③).小辰阅读后发现,拼接前后图形的面积相等,若设新的正方形的边长为x(x>0),可得x2=5,x=.由此可知新正方形边长等于两个小正方形组成的矩形的对角线长.参考上面的材料和小辰的思考方法,解决问题:五个边长为1的小正方形(如图④放置),用两条线段把它们分割成四部分,移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的矩形,且所得矩形的邻边之比为1:2.具体要求如下:(1)设拼接后的长方形的长为a,宽为b,则a的长度为;(2)在图④中,画出符合题意的两条分割线(只要画出一种即可);(3)在图⑤中,画出拼接后符合题意的长方形(只要画出一种即可)26.某电信公司提供了A,B两种通讯方案,其通讯费用y(元)与通话时间x(分)之间的关系如图所示,观察图象,回答下列问题:(1)某人若按A方案通话时间为100分钟时通讯费用为元;若通讯费用为70元,则按B方案通话时间为分钟;(2)求B方案的通讯费用y(元)与通话时间x(分)之间的函数关系式;(3)当B方案的通讯费用为50元,通话时间为170分钟时,若此时与A方案的通讯费用相比差10元,直接写出两种方案通话时间相差多少分钟.27.在正方形ABCD中,P是CD上的一动点,连接PA,分别过点B、D作BE⊥PA、DF⊥PA,垂足为E、F.(1)求证:BE=EF+DF;(2)如图(2),若点P是DC的延长线上的一个动点,请探索BE、DF、EF三条线段之间的数量关系?并说明理由;(3)如图(3),若点P是CD的延长线上的一个动点,请探索BE、DF、EF三条线之间的数量关系?(直接写出结论,不需说明理由).28.如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.2014-2015学年黑龙江省绥化市安达市八年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题意的)1.下列计算正确的是()A.=2B.()2=4C.×=D.÷=3考点:二次根式的乘除法;二次根式的性质与化简.分析:分别利用二次根式的性质以及二次根式乘除运算法则求出判断即可.解答:解:A、=4,故此选项错误;B、()2=2,故此选项错误;C、×=,此选项正确,D、÷=,故此选项错误;故选:C.点评:此题主要考查了二次根式的乘除运算以及二次根式化简,正确掌握运算法则是解题关键.2.下列二次根式中,最简二次根式是()A.B.C.D.考点:最简二次根式.分析:利用最简二次根式的定义求解.解答:解:A、=2,故不是最简二次根式,不符合题意;B、是最简二次根式,符合题意;C、=2,故不是最简二次根式,不符合题意;D、=,故不是最简二次根式,不符合题意.故选:B.点评:本题主要考查了最简二次根式,解题的关键是熟记最简二次根式的定义.3.由线段a,b,c组成的三角形是直角三角形的是()A.a=1,b=1,c=2B.a=,b=1,c=1C.a=4,b=5,c=6D.a=1,b=2,c=考点:勾股定理的逆定理.分析:欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.解答:解:A、因为12+12≠22,所以不能组成直角三角形,故本选项错误;B、因为12+12≠()2,不能组成直角三角形,故本选项错误;C、因为42+52≠62,所以不能组成直角三角形,故本选项错误;D、因为12+()2=22,所以能组成直角三角形,故本选项正确.故选:D.点评:此题考查利用了勾股定理的逆定理判定一个三角形是否是直角三角形的运用.4.三角形的三边长分别为6,8,10,它的最长边上的高为()A.6B.2.4C.8D.4.8考点:勾股定理的逆定理.分析:根据已知先判定其形状,再根据三角形的面积公式求得其高.解答:解:∵三角形的三边长分别为6,8,10,符合勾股定理的逆定理62+82=102,∴此三角形为直角三角形,则10为直角三角形的斜边,设三角形最长边上的高是h,根据三角形的面积公式得:×6×8=×10h,解得h=4.8.故选D.点评:考查了勾股定理的逆定理,解答此题的关键是先判断出三角形的形状,再根据三角形的面积公式解答.5.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()A.108°B.72°C.90°D.100°考点:菱形的性质;线段垂直平分线的性质.分析:由菱形的性质得出∠ADP=∠CDP=∠ADC,PA=PC,再由线段垂直平分线的性质得出PA=PD,证出PD=PC,得出∠PCD=∠CDP=36°,由外角性质即可求出∠CPB.解答:解:连接PA,如图所示:∵四边形ABCD是菱形,∴∠ADP=∠CDP=∠ADC=36°,BD所在直线是菱形的对称轴,∴PA=PC,∵AD的垂直平分线交对角线BD于点P,∴PA=PD,∴PD=PC,∴∠PCD=∠CDP=36°,∴∠CPB=∠PCD+∠CDP=72°;故选:B.点评:本题考查了菱形的性质、线段垂直平分线的性质、等腰三角形的性质;熟练掌握菱形的性质,证明三角形是等腰三角形是解决问题的关键.6.下面在平面直角坐标系中所给的四个图象中,是函数图象的是()A.B.C.D.考点:函数的图象;函数的概念.分析:函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量.解答:解:由函数的定义可得,只有A选项图象,对于x的每一个确定的值,y轴有唯一确定的值与它对应,是函数图象,B、C、D选项都有对于x的一个值,y有两个确定的值与它对应的情况,不是函数图象.故选A.点评:本题考查了函数图象,熟练掌握函数的定义并理解自变量x与函数值y的一一对应关系是解题的关键.7.如图,由9个全等的等边三角形拼成一个几何图案,这个图案中共有平行四边形()A.15个B.14个C.13个D.12个考点:平行四边形的判定.分析:根据全等三角形的性质及平行四边形的判定,可找出15个平行四边形.解答:解:两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出15个平行四边形.故选:A.点评:此题主要考查学生对平行四边形的判定的掌握情况和读图能力,注意找图过程中,要做到不重不漏.8.在平面直角坐标系中,点P(x,﹣x+3)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:分x是正数和负数两种情况讨论求解.解答:解:x>0时,﹣x+3可以是负数也可以是正数,∴点P可以在第一象限也可以在第四象限,x<0时,﹣x+3>0,∴点P在第二象限,不在第三象限.故选C.点评:本题考查了点的坐标,根据x的情况确定出﹣x+3的正负情况是解题的关键.9.直角三角形两边的长分别为3和4,则此直角三角形斜边上的中线长为()A.5和4B.2.5和2C.5D.2考点:直角三角形斜边上的中线;勾股定理.分析:分为两种情况①当AC=3,BC=4时,由勾股定理求出AB,根据直角三角形斜边上中线得出CD=AB,求出即可;②当AC=3,AB=4时,根据直角三角形斜边上中线得出CD=AB,求出即可.解答:解:分为两种情况:①当AC=3,BC=4时,由勾股定理得:AB==5,∵CD是斜边AB上的中线,∴CD=AB=2.5;②当AC=3,AB=4时,∵CD是斜边AB上的中线,∴CD=AB=2;即CD=2.5或2,故选B.点评:本题考查了勾股定理和直角三角形斜边上中线性质,注意:注意:①直角三角形斜边上中线等于斜边的一半,②要进行分类讨论.10.如图,现有一长方体的实心木块,有一蚂蚁从A处出发沿长方体表面爬行到C′处,若长方体的长AB=4cm,宽BC=3cm,高BB′=2cm,则蚂蚁爬行的最短路径是()A.cmB.cmC.cmD.7cm考点:平面展开-最短路径问题.分析:连接AC′,求出AC′的长即可,分为三种情况:画出图形,根据
本文标题:【解析版】绥化市安达市2014-2015学年八年级下期末数学试卷
链接地址:https://www.777doc.com/doc-7836577 .html