您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】滕西中学2014-2015年八年级上第一次月考数学试卷
2014-2015学年山东省枣庄市滕州市滕西中学八年级(上)第一次月考数学试卷一、选择题(每小题3分)1.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个B.2个C.3个D.4个2.16的平方根是()A.4B.±4C.8D.±83.﹣的绝对值是()A.B.﹣C.D.﹣4.实数4的算术平方根是()A.﹣2B.2C.±2D.±45.的相反数是()A.B.C.﹣D.﹣6.若a,b为实数,且|a+1|+=0,则(ab)2013的值是()A.0B.1C.﹣1D.±17.实数a在数轴上的位置如图所示,则|a﹣2.5|=()A.a﹣2.5B.2.5﹣aC.a+2.5D.﹣a﹣2.58.如图,A、B两点在数轴上表示的数分别是a、b,则下列式子中成立的是()A.a+b<0B.﹣a<﹣bC.1﹣2a>1﹣2bD.|a|﹣|b|>09.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13B.26C.47D.9410.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.10+5D.35二.填空题(每小题3分)11.求值:=.12.﹣的立方根是.13.已知,则ab=.14.有下列计算:①(m2)3=m6,②,③m6÷m2=m3,④,⑤,其中正确的运算有.15.如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD=cm.16.已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为.17.一艘轮船以16km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以30km/h的速度向东南方向航行,它们离开港口半小时后相距km.18.某楼梯的侧面视图如图所示,其中AB=4米,∠BAC=30°,∠C=90°,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为米.19.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm;如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要cm.20.等腰△ABC的腰长AB为10cm,底边BC为16cm,则底边上的高为.三、解答题(满分40分)21.化简:(1)÷﹣×+.(2)+﹣;(3)(2﹣2)(3+);(4)3(2﹣4+3);(5)(﹣2+)•(x≥0,y≥0);(6)2a﹣+2ab(a≥0)22.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)23.如图是一块地,已知AD=8cm,CD=6cm,∠D=90°,AB=26cm,BC=24cm,求这块地的面积.24.如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.(1)试判断△BDE的形状,并说明理由;(2)若AB=4,AD=8,求△BDE的面积.2014-2015学年山东省枣庄市滕州市滕西中学八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分)1.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个B.2个C.3个D.4个考点:无理数.专题:常规题型.分析:无限不循环小数为无理数,由此可得出无理数的个数.解答:解:由定义可知无理数有:0.131131113…,﹣π,共两个.故选:B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.16的平方根是()A.4B.±4C.8D.±8考点:平方根.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±4)2=16,∴16的平方根是±4.故选:B.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.﹣的绝对值是()A.B.﹣C.D.﹣考点:实数的性质.分析:根据负数的绝对值等于它的相反数解答.解答:解:|﹣|=.故选A.点评:本题考查了实数的性质,主要利用了负数的绝对值是它的相反数.4.实数4的算术平方根是()A.﹣2B.2C.±2D.±4考点:算术平方根.分析:根据算术平方根的定义解答即可.解答:解:∵22=4,∴4的算术平方根是2,即=2.故选B.点评:本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.5.的相反数是()A.B.C.﹣D.﹣考点:实数的性质.分析:由于互为相反数的两个数和为0,由此即可求解.解答:解:的相反数为:﹣.故选:C.点评:此题主要考查了求无理数的相反数,无理数的相反数和有理数的相反数的意义相同,无理数的相反数是各地中考的重点.6.若a,b为实数,且|a+1|+=0,则(ab)2013的值是()A.0B.1C.﹣1D.±1考点:非负数的性质:算术平方根;非负数的性质:绝对值.专题:计算题.分析:根据非负数的性质列式求出a、b,然后代入代数式进行计算即可得解.解答:解:根据题意得,a+1=0,b﹣1=0,解得a=﹣1,b=1,所以,(ab)2013=(﹣1×1)2013=﹣1.故选:C.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.实数a在数轴上的位置如图所示,则|a﹣2.5|=()A.a﹣2.5B.2.5﹣aC.a+2.5D.﹣a﹣2.5考点:实数与数轴.分析:首先观察数轴,可得a<2.5,然后由绝对值的性质,可得|a﹣2.5|=﹣(a﹣2.5),则可求得答案.解答:解:如图可得:a<2.5,即a﹣2.5<0,则|a﹣2.5|=﹣(a﹣2.5)=2.5﹣a.故选B.点评:此题考查了利用数轴比较实数的大小及绝对值的定义等知识.此题比较简单,注意数轴上的任意两个数,右边的数总比左边的数大.8.如图,A、B两点在数轴上表示的数分别是a、b,则下列式子中成立的是()A.a+b<0B.﹣a<﹣bC.1﹣2a>1﹣2bD.|a|﹣|b|>0考点:实数与数轴.分析:根据a、b两点在数轴上的位置判断出其取值范围,再对各选项进行逐一分析即可.解答:解:a、b两点在数轴上的位置可知:﹣2<a<﹣1,b>2,∴a+b>0,﹣a<b,故A、B错误;∵a<b,∴﹣2a>﹣2b,∴1﹣2a>1﹣2b,故C正确;∵|a|<2,|b|>2,∴|a|﹣|b|<0,故D错误.故选C.点评:本题考查的是数轴的特点,根据a、b两点在数轴上的位置判断出其取值范围是解答此题的关键.9.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13B.26C.47D.94考点:勾股定理.菁优网版权所有专题:数形结合.分析:根据正方形的面积公式,结合勾股定理,能够导出正方形A,B,C,D的面积和即为最大正方形的面积.解答:解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=9+25+4+9=47.故选:C.点评:能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.10.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.10+5D.35考点:平面展开-最短路径问题.专题:压轴题.分析:要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.解答:解:将长方体展开,连接A、B,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:AB====25.(2)如图,BC=5,AC=20+10=30,由勾股定理得,AB====5.(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;由于25<5<5,故选B.点评:本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.二.填空题(每小题3分)11.求值:=﹣2.考点:立方根.分析:利用立方根的定义即可求解.解答:解:∵(﹣2)3=﹣8,∴=﹣2.故答案为:﹣2.点评:本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.12.﹣的立方根是﹣3.考点:立方根;算术平方根.分析:根据开立方运算,可得一个数的立方根.解答:解:﹣的立方根是﹣3,故答案为:﹣3.点评:本题考查了立方根,先求平方根,再求立方根.13.已知,则ab=1.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b,然后代入代数式进行计算即可得解.解答:解:根据题意得,a﹣1=0,a+b+1=0,解得a=1,b=﹣2,所以,ab=1﹣2=1.故答案为:1.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.有下列计算:①(m2)3=m6,②,③m6÷m2=m3,④,⑤,其中正确的运算有①④⑤.考点:二次根式的加减法;幂的乘方与积的乘方;同底数幂的除法;二次根式的性质与化简;二次根式的乘除法.专题:压轴题.分析:由幂的乘方,可得①正确;由二次根式的化简,可得②错误;由同底数的幂的除法,可得③错误;由二次根式的乘除运算,可求得④正确;由二次根式的加减运算,可求得⑤正确.解答:解:∵(m2)3=m6,∴①正确;∵==|2a﹣1|=,∴②错误;∵m6÷m2=m4,∴③错误;∵=3×5÷=15÷=15,∴④正确;∵=4﹣2+12=14,∴⑤正确.∴正确的运算有:①④⑤.故答案为:①④⑤.点评:此题考查了幂的乘方、同底数幂的除法、二次根式的化简、二次根式的乘除运算以及二次根式的加减运算.此题比较简单,注意掌握运算法则与性质,注意运算需细心.15.如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD=4cm.考点:勾股定理.分析:先根据等腰三角形的性质求出BD的长,再根据勾股定理解答即可.解答:解:根据等腰三角形的三线合一可得:BD=BC=×6=3cm,在直角△ABD中,由勾股定理得:AB2=BD2+AD2,所以,AD==4cm.故答案为:4.点评:本题考查了等腰三角形的性质和勾股定理.关键要熟知等腰三角形的三线合一可得.16.已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为.考点:勾股定理.专题:压轴题.分析:先用直角三角形的边长表示出阴影部分的面积,再根据勾股定理可得:AB2=AC2+BC2,进而可将阴影部分的面积求出.解答:解:在Rt△ABC中,AB2=AC2+BC2,AB=3,S阴影=S△AHC+S△BFC+S△AEB=×+×+×=(AC2+BC2+AB2)=AB2,=×32=.故图中阴影部分的面积为.点评:本题主要是考查勾股定理的应用
本文标题:【解析版】滕西中学2014-2015年八年级上第一次月考数学试卷
链接地址:https://www.777doc.com/doc-7836583 .html