您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】镇赉县胜利中学2014-2015年九年级上期中数学试卷
2014-2015学年吉林省白城市镇赉县胜利中学九年级(上)期中数学试卷一、选择题(每小题2分,共12分)1.方程x2=16的解是()A.x=±4B.x=4C.x=﹣4D.x=162.下列图形中,是圆周角的是()A.B.C.D.3.永州的文化底蕴深厚,永州人民的生活健康向上,如瑶族长鼓舞,东安武术,宁远举重等,下面的四幅简笔画是从永州的文化活动中抽象出来的,其中是轴对称图形的是()A.B.C.D.4.若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点()A.(2,4)B.(﹣2,﹣4)C.(﹣4,2)D.(4,﹣2)5.如图,在一幅长为60cm,宽为40cm的矩形风景画的四周镶一条相同宽度的纸边,制成一幅矩形挂图.若要使整个挂图的面积是3500cm2,设纸边的宽为x(cm),则x满足的方程是()A.(60+x)(40+x)=3500B.(60+2x)(40+2x)=3500C.(60﹣x)(40﹣x)=3500D.(60﹣2x)(40﹣2x)=35006.如图,在Rt△ABC中,∠ACB=90°,M为AB边的中点,将Rt△ABC绕点M旋转,使点A与点C重合得到△CED,连接MD.若∠B=25°,则∠BMD等于()A.50°B.80°C.90°D.100°二、填空题(每小题3分,共24分)7.请你写出一个有一根为1的一元二次方程:.(答案不唯一)8.如果关于x的方程x2﹣2x+k=0(k为常数)有两个相等的实数根,那么k=.9.若二次函数y=x2+mx﹣3的对称轴是x=1,则m=.10.如图,在⊙O中,将△OAB绕点O顺时针方向旋转85°,得到△OCD.若∠BOA=45°,则∠BOC的度数为.11.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是.12.如图,AB是半圆的直径,点C在半圆周上,连接AC,∠BAC=30°,点P在线段OB上运动.则∠ACP的度数可以是.13.如图,⊙O的直径为10,点A、B、C在⊙O上,∠CAB的平分线AD交⊙O于点D.若∠CAB=60°,则BD的长为.14.某同学利用描点法画二次函数y=ax2+bx+c(a≠0)的图象时,列出的部分数据如下表:经检查,发现表格中恰好有一组数据计算错误,请你根据上述信息写出该二次函数的解析式:.x01234y30﹣203三、解答题(每小题5分,共20分)15.解方程:x2﹣8x﹣1=0.16.解方程:2x2+7x﹣1=6x+2.17.如图,OA、OB是⊙O的半径,点C为弧AB上一点,连接OC.点D、E分别是OA、OB上的点,且AD=BE,连接CD、CE.若CD=CE.求证:∠AOC=∠BOC.18.若二次函数图象的顶点坐标为(﹣1,﹣2),且通过点(1,10),求这个二次函数的解析式.四、解答题(每小题7分,共28分)19.分别在下图中画出△ABC绕点O顺时针旋转90°和180°后的图形.20.关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.21.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.求平均每次下调的百分率.22.如图,OD是⊙O的半径,弦AB⊥OD于点C,连接BO并延长交⊙O于点E,连接EC,AE.若AB=8,CD=2,求CE的长.五、解答题(每小题8分,共16分)23.某商场以每件20元购进一批衬衫,若以每件40元出售,则每天可售出60件,经调查发现,如果每件衬衫每涨价1元,商场平均每天可少售出2件,若设每件衬衫涨价x元,所获得的利润为y元.(1)求y与x的函数关系式;(2)求每件衬衫涨价多少元时,商场所获得的利润最多,最多是多少元?24.如图,在平面直角坐标系中,点A、B的坐标分别为(0,3)、(1,0),连接AB将线段AB绕点B旋转90°得到线段CB.抛物线y=x2+bx﹣的图象经过点C.(1)求点C的坐标;(2)求抛物线的解析式;(3)若将线段AB向右平移,使点B恰好落在抛物线上,求线段AB扫过的面积.六、解答题(每小题10分,共20分)25.如图①,点A、B、C在⊙O上,且AB=AC,P是弧AC上的一点,(点P不与点A、C重合),连接AP、BP、CP,在BP上截取BD=AP,连接CD.若∠APB=60°,解答下列问题:(1)求证:△ABC是等边三角形;(2)求证:△CDP是等边三角形;(3)如图②,若点D和圆心O重合,AB=2,则PC的长为.26.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.(1)求抛物线的解析式和直线BC的解析式;(2)当点P在线段OB上运动时,若△CMN是以MN为腰的等腰直角三角形时,求m的值;(3)当以C、O、M、N为顶点的四边形是以OC为一边的平行四边形时,求m的值.2014-2015学年吉林省白城市镇赉县胜利中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共12分)1.(2009•清远)方程x2=16的解是()A.x=±4B.x=4C.x=﹣4D.x=16考点:解一元二次方程-直接开平方法.分析:用直接开方法求一元二次方程x2=16的解.解答:解:x2=16,∴x=±4.故选:A.点评:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.2.(2014秋•渭源县期末)下列图形中,是圆周角的是()A.B.C.D.考点:圆周角定理.分析:根据圆周角的定义对各选项进行判断.解答:解:A图中的角为圆内角,B图中的角为圆周角,C图中的角为圆心角,D图中的角为弦切角.故选B.点评:本题考查了圆周角:顶点在圆周上,且两边与圆相交的角叫圆周角.3.(2014•永州)永州的文化底蕴深厚,永州人民的生活健康向上,如瑶族长鼓舞,东安武术,宁远举重等,下面的四幅简笔画是从永州的文化活动中抽象出来的,其中是轴对称图形的是()A.B.C.D.考点:利用轴对称设计图案.分析:根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,即可作出判断.解答:解:轴对称图形的只有C.故选:C.点评:本题考查了轴对称图形的定义,解答此题要明确:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形,对称轴是折痕所在的这条直线叫做对称轴.4.(2013•丽水)若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点()A.(2,4)B.(﹣2,﹣4)C.(﹣4,2)D.(4,﹣2)考点:二次函数图象上点的坐标特征.分析:先确定出二次函数图象的对称轴为y轴,再根据二次函数的对称性解答.解答:解:∵二次函数y=ax2的对称轴为y轴,∴若图象经过点P(﹣2,4),则该图象必经过点(2,4).故选:A.点评:本题考查了二次函数图象上点的坐标特征,主要利用了二次函数图象的对称性,确定出函数图象的对称轴为y轴是解题的关键.5.(2014秋•镇赉县校级期中)如图,在一幅长为60cm,宽为40cm的矩形风景画的四周镶一条相同宽度的纸边,制成一幅矩形挂图.若要使整个挂图的面积是3500cm2,设纸边的宽为x(cm),则x满足的方程是()A.(60+x)(40+x)=3500B.(60+2x)(40+2x)=3500C.(60﹣x)(40﹣x)=3500D.(60﹣2x)(40﹣2x)=3500考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:如果设纸边的宽为xcm,那么挂图的长和宽应该为(40+2x)和(60+2x),根据总面积即可列出方程.解答:解:设纸边的宽为xcm,那么挂图的长和宽应该为(60+2x)和(40+2x),根据题意可得出方程为:(60+2x)(40+2x)=3500,故选B.点评:考查了一元二次方程的运用,此类题是看准题型列面积方程,题目不难,重在看准题.6.(2013秋•孝南区期末)如图,在Rt△ABC中,∠ACB=90°,M为AB边的中点,将Rt△ABC绕点M旋转,使点A与点C重合得到△CED,连接MD.若∠B=25°,则∠BMD等于()A.50°B.80°C.90°D.100°考点:旋转的性质;直角三角形斜边上的中线.专题:计算题.分析:由∠B=25°,则∠A=65°,根据旋转的性质得MA=MC,则∠AMC=50°,从而得出∠BMD的度数.解答:解:∵∠B=25°,∴∠A=65°,∵∠ACB=90°,M为AB边的中点,∴MA=MC,∴∠ACM=65°,∴∠AMC=50°,∴∠AMD=100°,∴∠BMD=80°,故选B.点评:本题考查了旋转的性质,以及直角三角形斜边上的中线等于斜边的一半.二、填空题(每小题3分,共24分)7.(2009•山西)请你写出一个有一根为1的一元二次方程:x2=1.(答案不唯一)考点:一元二次方程的解.专题:开放型.分析:可以用因式分解法写出原始方程,然后化为一般形式即可.解答:解:根据题意x=1得方程式x2=1.故本题答案不唯一,如x2=1等.点评:本题属于开放性试题,主要考查一元二次方程的概念的理解与掌握.可以用因式分解法写出原始方程,然后化为一般形式即可,如(y﹣1)(y+2)=0,后化为一般形式为y2+y﹣2=0.8.(2014秋•镇赉县校级期中)如果关于x的方程x2﹣2x+k=0(k为常数)有两个相等的实数根,那么k=1.考点:根的判别式.专题:计算题.分析:根据判别式的意义得到△=(﹣2)2﹣4k=0,然后解一元一次方程即可.解答:解:根据题意得△=(﹣2)2﹣4k=0,解得k=1.故答案为1.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.(2014秋•渭源县期末)若二次函数y=x2+mx﹣3的对称轴是x=1,则m=﹣2.考点:二次函数的性质.分析:根据二次函数的对称轴公式列式计算即可得解.解答:解:对称轴为直线x=﹣=﹣=1,解得m=﹣2.故答案为:﹣2;点评:本题考查了二次函数的性质,主要利用了对称轴公式,需熟记.10.(2014秋•镇赉县校级期中)如图,在⊙O中,将△OAB绕点O顺时针方向旋转85°,得到△OCD.若∠BOA=45°,则∠BOC的度数为40°.考点:旋转的性质.专题:计算题.分析:根据旋转的性质得∠AOC=85°,然后利用∠BOC=∠AOC﹣∠BOA进行计算即可.解答:解:∵△OAB绕点O顺时针方向旋转85°得到△OCD,∴∠AOC=85°,∵∠BOA=45°,∴∠BOC=∠AOC﹣∠BOA=85°﹣45°=40°.故答案为40°.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.11.(2014•益阳)如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是60°.考点:旋转的性质;等边三角形的性质.专题:计算题.分析:根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF的度数.解答:解:∵将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,∴旋转角为60°,E,F是对应点,则∠EAF的度数为:60°.故答
本文标题:【解析版】镇赉县胜利中学2014-2015年九年级上期中数学试卷
链接地址:https://www.777doc.com/doc-7836639 .html