您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2014-2015年九年级上《第23章旋转》测试题及答案
一、相信你的选择(每题4分,共32分).1.正方形的对称轴的条数为()A.1B.2C.3D.42.下列图形中既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.正方形D.正五边形6.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30°B.60°C90°D.150°7.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cmB.18cmC.20cmD.22cm8.将点P(﹣2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(5,﹣3)xkb1.com二、试试你的身手(每小题4分,共20分).11.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是.12.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是.13.将y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是.三、挑战你的技能(共48分).14.(8分)如图,△ABC与△DEF关于某条直线对称,请用无刻度的直尺,在下面两个图中分别作出该直线.15.(10分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.16.(8分)在棋盘中建立如图所示的直角坐标系,三颗棋子A,O,B的位置如图,它们的坐标分别是1,1,(0,0),(1,0).(1)如图2,添加棋C子,使四颗棋子A,O,B,C成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使四颗棋子A,O,B,P成为轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)17.(12分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周小最小,请画出△PAB,并直接写出P的坐标.18.(10分)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?参考答案:一、1.D2.C3.A4.C5.B6.B7.C8.C二、9.45°10.55°11.60°12.(-4,3)13.x>﹣4三、14.15.解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,∴AC=DC,∠A=60°,∴△ADC是等边三角形,∴∠ACD=60°,∴n的值是60;(2)四边形ACFD是菱形;理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC,∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,∴四边形ACFD是菱形.16.略17.解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△PAB如图所示,P(2,0).
本文标题:2014-2015年九年级上《第23章旋转》测试题及答案
链接地址:https://www.777doc.com/doc-7837032 .html