您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2015-2016年都匀市八年级上期中数学试卷含答案解析版
2015-2016学年贵州省黔南州都匀市八年级(上)期中数学试卷一、选择题(每小题3分,共39分,将唯一正确答案的代号的字母填在下面的方格内)1.如图,轴对称图形有()A.3个B.4个C.5个D.6个2.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)3.下列说法正确的是()A.三角形三条高都在三角形内B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线4.如果D是△ABC中BC边上一点,并且△ADB≌△ADC,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形5.已知点M(a,2),B(3,b)关于y轴对称,则(a+b)2014的值()A.﹣3B.﹣1C.1D.36.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cmB.4cmC.6cmD.8cm7.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSSB.SASC.AASD.ASA8.若正n边形的每个内角都是120°,则n的值是()A.3B.4C.6D.89.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5B.5或6C.5或7D.5或6或710.若等腰三角形一腰上的高是腰长的一半,则这个等腰三角形的底角是()A.75°或15°B.75°C.15°D.75°或30°11.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cmB.7.5cmC.11cm或7.5cmD.以上都不对12.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°13.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠NB.AM=CNC.AB=CDD.AM∥CN二、填空题(每小题3分,共24分,答案直接填在题中的横线上)14.如图所示,观察规律并填空:__________.15.如图,点D、E分别边AB、AC的中点,将△ADE沿着DE对折,点A落在BC边的点F上,若∠B=50°,则∠BDF=__________.16.已知△ABC的一个外角为50°,则△ABC一定是__________三角形.17.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件__________,依据是__________.18.要使五边形木架(用5根木条钉成)不变形,至少要再钉__________根木条.19.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F=__________.20.如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为3x﹣2,2x﹣1,3,若这两个三角形全等,则x=__________.21.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了__________米.三、解答题(共16分)22.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.23.已知:如图,已知△ABC.(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)计算△ABC的面积.24.在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.(1)若∠ABE=40°,求∠EBC的度数;(2)若△ABC的周长为41cm,一边长为15cm,求△BCE的周长.25.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.26.如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.27.如图,在△ABC中,∠1=∠2,∠3=∠4,∠A=60°,求证:CD+BE=BC.2015-2016学年贵州省黔南州都匀市八年级(上)期中数学试卷一、选择题(每小题3分,共39分,将唯一正确答案的代号的字母填在下面的方格内)1.如图,轴对称图形有()A.3个B.4个C.5个D.6个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可选出轴对称图形.【解答】解:由轴对称图形的概念可知第1个,第2个,第3个,第5个都是轴对称图形.第4个和第6个不是轴对称图形,故是轴对称图形的有4个.故选B.【点评】本题考查了轴对称图形的判断方法,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2),故选:C.【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3.下列说法正确的是()A.三角形三条高都在三角形内B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线【考点】三角形的角平分线、中线和高.【分析】根据三角形的高、中线、角平分线的定义对各选项分析判断后利用排除法求解.【解答】解:A、只有锐角三角形三条高都在三角形内,故本选项错误;B、三角形三条中线相交于一点正确,故本选项正确;C、三角形的三条角平分线一定都在三角形内,故本选项错误;D、三角形的角平分线是线段,故本选项错误.故选B.【点评】本题考查了三角形的高线、中线、角平分线,是基础题,熟记概念是解题的关键.4.如果D是△ABC中BC边上一点,并且△ADB≌△ADC,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形【考点】等腰三角形的判定;全等三角形的性质.【分析】画出图形就能明显看出来,运用全等的性质,易解.【解答】解:∵△ADB≌△ADC∴AB=AC∴△ABC是等腰三角形.故选D.【点评】本题考查了等腰三角形的判定及全等三角形的性质;利用全等三角形的性质是正确解答本题的关键.5.已知点M(a,2),B(3,b)关于y轴对称,则(a+b)2014的值()A.﹣3B.﹣1C.1D.3【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得a、b的值,根据负数的偶数次幂是正数,可得答案.【解答】解:由点M(a,2),B(3,b)关于y轴对称,得a=﹣3,b=2.(a+b)2014=(﹣3+2)2014=1,故选:C.【点评】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cmB.4cmC.6cmD.8cm【考点】含30度角的直角三角形.【分析】根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:∵直角三角形中30°角所对的直角边为2cm,∴斜边的长为2×2=4cm.故选B.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,是基础题,熟记性质是解题的关键.7.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSSB.SASC.AASD.ASA【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.8.若正n边形的每个内角都是120°,则n的值是()A.3B.4C.6D.8【考点】多边形内角与外角.【分析】根据内角度数先算出外角度数,然后再根据外角和计算出边数即可.【解答】解:∵正n边形的每个内角都是120°,∴每一个外角都是180°﹣120°=60°,∵多边形外角和为360°,∴多边形的边数为360÷60=6,故选:C.【点评】此题主要考查了多边形的内角和外角,关键是掌握多边形的外角和等于360度.9.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5B.5或6C.5或7D.5或6或7【考点】多边形内角与外角.【分析】首先求得内角和为720°的多边形的边数,即可确定原多边形的边数.【解答】解:设内角和为720°的多边形的边数是n,则(n﹣2)•180=720,解得:n=6.则原多边形的边数为5或6或7.故选:D.【点评】本题考查了多边形的内角和定理,理解分三种情况是关键.10.若等腰三角形一腰上的高是腰长的一半,则这个等腰三角形的底角是()A.75°或15°B.75°C.15°D.75°或30°【考点】含30度角的直角三角形;等腰三角形的性质.【分析】因为三角形的高有三种情况,而直角三角形不合题意,故舍去,所以应该分两种情况进行分析,从而得到答案.【解答】解:当等腰三角形是锐角三角形时,如图1所示∵CD⊥AB,CD=AC,∴sin∠A==,∴∠A=30°,∴∠B=∠ACB=75°;当等腰三角形是钝角三角形时,如图2示,∵CD⊥AB,即在直角三角形ACD中,CD=AC,∴∠CAD=30°,∴∠CAB=150°,∴∠B=∠ACB=15°.故其底角为15°或75°.故选A.【点评】此题主要考查等腰三角形的性质,含30°的角的直角三角形的性质,在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.11.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cmB.7.5cmC.11cm或7.5cmD.以上都不对【考点】等腰三角形的性质.【分析】分边11cm是腰长与底边两种情况讨论求解.【解答】解:①11cm是腰长时,腰长为11cm,②11cm是底边时,腰长=(26﹣11)=7.5cm,所以,腰长是11cm或7.5cm.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.12.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°【考点】平行线的性质;三角形内角和定理.【分析】根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.【解答】解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.【点评】本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.13.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.
本文标题:2015-2016年都匀市八年级上期中数学试卷含答案解析版
链接地址:https://www.777doc.com/doc-7837152 .html