您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2015-2016学年宁津县八年级上第一次月考数学试卷含答案解析
2015-2016学年山东省德州市宁津县八年级(上)第一次月考数学试卷一、单项选择题:(每小题3分,共27分)1.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cmB.5cm,6cm,10cmC.1cm,1cm,3cmD.3cm,4cm,9cm2.等腰三角形一边长等于4,一边长等于9,则它的周长等于()A.17B.22C.17或22D.133.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形4.下列说法错误的是()A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线5.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5B.6C.7D.86.如图:BO、CO是∠ABC,∠ACB的两条角平分线,∠A=100°,则∠BOC的度数为()A.80°B.90°C.120°D.140°7.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去8.下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形9.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个二、填空题(每空2分,共20分)10.如图,若△ABC≌△DEF,则∠E=度.11.四条线段的长分别为5cm,6cm,8cm,13cm,以其中任意三条线段为边可以构成个三角形.12.n边形的每个外角都等于45°,则n=.13.三角形的三个外角中,钝角的个数最多有个,锐角最多个.14.从n(n>3)边形的一个顶点出发可以引条对角线,它们将n边形分成个三角形.15.三角形三条角平分线的交点叫,三角形三条中线的交点叫,三角形三条垂线的交点叫.三、解答题(本大题共53分)16.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.17.证明三角形的内角和定理:已知△ABC(如图),求证:∠A+∠B+∠C=180°.18.如图,已知AB=AC,AD=AE,BE与CD相交于O,△ABE与△ACD全等吗?说明你的理由.19.如图,AC和BD相交于点E,AB∥CD,BE=DE.求证:AB=CD.2015-2016学年山东省德州市宁津县八年级(上)第一次月考数学试卷参考答案与试题解析一、单项选择题:(每小题3分,共27分)1.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cmB.5cm,6cm,10cmC.1cm,1cm,3cmD.3cm,4cm,9cm【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,知A、2+3=5,不能组成三角形;B、5+6>10,能够组成三角形;C、1+1<3,不能组成三角形;D、3+4<9,不能组成三角形.故选B.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.2.等腰三角形一边长等于4,一边长等于9,则它的周长等于()A.17B.22C.17或22D.13【考点】等腰三角形的性质.【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:∵4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22,故选B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【考点】三角形内角和定理.【分析】此题隐含的条件是三角形的内角和为180°,列方程,根据已知中角的关系求解,再判断三角形的形状.【解答】解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,即6∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴△ABC为直角三角形.故选B.【点评】此题主要考查了三角形的内角和定理:三角形的内角和为180°.4.下列说法错误的是()A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线【考点】三角形的角平分线、中线和高.【分析】根据三角形的高线、中线、角平分线的性质分析各个选项.【解答】解:A、解:A、锐角三角形的三条高线、三条角平分线分别交于一点,故本选项说法正确;B、钝角三角形有两条高线在三角形的外部,故本选项说法正确;C、直角三角形也有三条高线,故本选项说法错误;D、任意三角形都有三条高线、中线、角平分线,故本选项说法正确;故选:C.【点评】本题考查了三角形的角平分线、中线和高线,是基础题,熟记概念是解题的关键.5.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5B.6C.7D.8【考点】多边形内角与外角.【分析】多边形的外角和是360度,多边形的内角和比它的外角和的2倍还大180°,则多边形的内角和是2×360+180=900度;n边形的内角和是(n﹣2)180°,则可以设这个多边形的边数是n,这样就可以列出方程(n﹣2)180°=900°,解之即可.【解答】解:多边形的内角和是2×360+180=900度,设这个多边形的边数是n,根据题意得:(n﹣2)180°=900°,解得n=7,即这个多边形的边数是7.故选C.【点评】本题考查了多边形的内角和公式和外角和定理.6.如图:BO、CO是∠ABC,∠ACB的两条角平分线,∠A=100°,则∠BOC的度数为()A.80°B.90°C.120°D.140°【考点】角平分线的定义;三角形内角和定理.【分析】△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO、CO是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解.【解答】解:△ABC中,∠ABC+∠ACB=180°﹣∠A=180°﹣100°=80°,∵BO、CO是∠ABC,∠ACB的两条角平分线.∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=40°,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=140°.故选D.【点评】本题主要考查了三角形的内角和定理,以及三角形的角平分线的定义.7.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去【考点】全等三角形的应用.【专题】应用题.【分析】此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.【点评】主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.8.下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形【考点】三角形的稳定性.【分析】根据三角形具有稳定性可得答案.【解答】解:直角三角形有稳定性,故选:B.【点评】此题主要考查了三角形的稳定性,是需要识记的内容.9.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定.【分析】∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.【解答】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.二、填空题(每空2分,共20分)10.如图,若△ABC≌△DEF,则∠E=100度.【考点】全等三角形的性质;三角形内角和定理.【分析】由图知:∠E和∠B对应相等,可先根据三角形内角和定理求得∠B的度数,即可得出∠E的度数.【解答】解:△ABC中,∠B=180°﹣∠A﹣∠C=100°;∵△ABC≌△DEF,∴∠E=∠B=100°.故填100.【点评】本题主要考查了全等三角形的性质以及三角形内角和定理;找准对应角是正确解答本题的关键.11.四条线段的长分别为5cm,6cm,8cm,13cm,以其中任意三条线段为边可以构成2个三角形.【考点】三角形三边关系.【分析】首先每三条组合得到所有的情况,再进一步根据三角形的三边关系进行分析.【解答】解:首先发现每三条可以组合为5、6、8;5、6、13;5、8、13;6、8、13;再根据三角形的三边关系,可知能构成三角形的为:5、6、8和6、8、13.因此可构成2个三角形.故答案为:2.【点评】考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.12.n边形的每个外角都等于45°,则n=8.【考点】多边形内角与外角.【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:360÷45=8,则n=8.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.13.三角形的三个外角中,钝角的个数最多有3个,锐角最多1个.【考点】三角形的外角性质.【专题】推理填空题.【分析】在锐角三角形的外角中,有三个钝角;在直角三角形外角中,有两个钝角;在钝角三角形外角中,有两个钝角.综上可知,在三角形的三个外角中,钝角的个数最多有3个.因为三角形的内角中钝角最多有1个,所以根据平角的定义可以得知三角形的外角中最多有1个锐角.【解答】解:∵三角形的内角和是180度,∴三角形的三个内角中最多可有3个锐角,∴对应的在三角形的三个外角中,钝角的个数最多有3个.∵三角形的内角最多有1个钝角,∴三角形的三个外角中,锐角最多有1个.故答案为:3,1.【点评】本题主要考查了三角形的内角和外角之间的关系:(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.14.从n(n>3)边形的一个顶点出发可以引(n﹣3)条对角线,它们将n边形分成(n﹣2)个三角形.【考点】多边形的对角线.【分析】根据n边形对角线的定义,可得n边形的对角线,根据对角线的条数,可得对角线分成三角形的个数.【解答】解:从n(n>3)边形的一个顶点出发可以引(n﹣3)条对角线,它们将n边形分成(n﹣2)个三角形.故答案为:
本文标题:2015-2016学年宁津县八年级上第一次月考数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7837224 .html