您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 北京市燕山区2013-2014年八年级下期末数学试题含答案解析
2013-2014学年北京市燕山区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的,请将正确答案前的字母填入下面的答题表中.1.二次函数y=(x﹣3)2+1的最小值是()A.1B.-1C.3D.-3考点:二次函数的最值.分析:根据二次函数的顶点式形式写出最小值即可.解答:解:当x=3时,二次函数y=(x﹣3)2+1的最小值是1.故选:A.点评:本题考查了二次函数的最值问题,熟练掌握利用顶点式解析式求最值的方法是解题的关键.2.下列二次根式中,是最简二次根式的是()A.13B.3C.12D.25a考点:最简二次根式.分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、被开方数含分母,不是最简二次根式,故A选项错误;B、满足最简二次根式的定义,是最简二次根式,故B选项正确;C、,被开方数含能开得尽方的因数,不是最简二次根式,故C选项错误;D、,被开方数含能开得尽方的因数,不是最简二次根式,故D选项错误.故选:B.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.下列长度的三条线段能组成直角三角形的是()A.1,1,2B.2,3,4C.4,5,6D.6,8,11考点:勾股定理的逆定理.分析:利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.解答:解:A、∵12+12=()2,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+52≠62,∴三条线段不能组成直角三角形,故C选项错误;D、∵62+82≠112,∴三条线段不能组成直角三角形,故D选项错误;故选:A.点评:此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.4.已知x=2是一元二次方程x2+2ax+8=0的一个根,则a的值为()A.1B.-1C.3D.-3考点:一元二次方程的解.分析:把x=2代入已知方程,通过解关于a的新方程来求a的值.解答:解:依题意得22+2a×2+8=0,即4a+12=0,解得a=﹣3.故选:D.点评:本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.5.将抛物线y=4x2向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A.2413yxB.2413yxC.2413yxD.2413yx-考点:二次函数图象与几何变换.分析:先确定出原抛物线的顶点坐标为(0,0),然后根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,然后写出即可.解答:解:抛物线y=4x2的顶点坐标为(0,0),∵函数图象向左平移1个单位,再向下平移3个单位,∴新抛物线的顶点坐标为(﹣1,﹣3),∴所得抛物线的解析式是y=4(x+1)2﹣3.故选:C.点评:主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式6.下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x与方差S2:甲乙丙丁平均数(cm)175173175174方差S2(cm2)3.53.512.515根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁考点:方差;算术平均数.分析:根据方差的意义先比较出甲、乙、丙、丁的大小,再根据平均数的意义即可求出答案.解答:解:∵S甲2=3.5,S乙2=3.5,S丙2=12.5,S丁2=15,∴S甲2=S乙2<S丙2<S丁2,∵=175,=173,∴>,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选:A.点评:此题考查了平均数和方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.在下列命题中,正确的是()A.有一组对边平行的四边形是平行四边形B.有一组邻边相等的平行四边形是菱形C.有一个角是直角的四边形是矩形D.对角线互相垂直平分的四边形是正方形考点:命题与定理.分析:本题可逐个分析各项,利用排除法得出答案.解答:解:A、一组对边平行且相等的四边形是平行四边形,故A选项错误;B、有一组邻边相等的平行四边形是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项错误;D、对角线互相垂直平分的四边形是菱形,故D选项错误.故选:B.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为()8O84yx8O84yx8O84yx8O84yxA.B.C.D.考点:动点问题的函数图象.专题:数形结合.分析:根据题意结合图形,分①0≤x≤4时,根据四边形PBDQ的面积=△ABD的面积﹣△APQ的面积,列出函数关系式,从而得到函数图象,②4≤x≤8时,根据四边形PBDQ的面积=△BCD的面积﹣△CPQ的面积,列出函数关系式,从而得到函数图象,再结合四个选项即可得解.解答:解:①0≤x≤4时,∵正方形的边长为4cm,∴y=S△ABD﹣S△APQ,=×4×4﹣•x•x,=﹣x2+8,②4≤x≤8时,y=S△BCD﹣S△CPQ,=×4×4﹣•(8﹣x)•(8﹣x),=﹣(8﹣x)2+8,所以,y与x之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有B选项图象符合.故选:B.点评:本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键.二、填空题(本题共16分,每小题4分)9.二次根式有意义,则x的取值范围是x≥3.考点:二次根式有意义的条件.分析:二次根式的被开方数x﹣3≥0.解答:解:根据题意,得x﹣3≥0,解得,x≥3;故答案为:x≥3.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10.(4分)如图,▱ABCD的对角线AC与BD相交于点O,E为CD边中点,已知BC=6cm,则OE的长为3cm.考点:三角形中位线定理;平行四边形的性质.分析:先说明OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.解答:解:∵▱ABCD的对角线AC、BD相交于点O,∴OB=OD,∵点E是CD的中点,∴CE=DE,∴OE是△BCD的中位线,∵BC=6cm,∴OE=BC=×6=3cm.故答案为:3.点评:本题运用了平行四边形的对角线互相平分这一性质和三角形的中位线定理.11.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x﹣1.5x2,该型号飞机着陆后滑行600m才能停下来.考点:二次函数的应用.分析:根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值.解答:解:∵a=﹣1.5<0,∴函数有最大值.∴y最大值===600,即飞机着陆后滑行600米才能停止.故答案为:600.点评:此题主要考查了二次函数的应用,运用二次函数求最值问题常用公式法或配方法得出是解题关键.12.(4分)二次函数y=x2的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,An在y轴的正半轴上,点B1,B2,B3,…,Bn在二次函数位于第一象限的图象上,点C1,C2,C3,…,Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3,…,四边形An﹣1BnAnCn都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3=…=∠An﹣1BnAn=60°,则A1点的坐标为(O,1),菱形An﹣1BnAnCn的周长为4n.考点:菱形的性质;二次函数图象上点的坐标特征;等边三角形的判定与性质.专题:规律型.分析:由于△A0B1A1,△A1B2A2,△A2B3A3,…,都是等边三角形,因此∠B1A0x=30°,可先设出△A0B1A1的边长,进而可求出A0的坐标,然后表示出B1的坐标,代入抛物线的解析式中即可求得△A0B1A1的边长,用同样的方法可求得△A0B1A1,△A1B2A2,△A2B3A3,…的边长,然后根据各边长的特点总结出此题的一般化规律,根据菱形的性质易求菱形An﹣1BnAnCn的周长.解答:解:∵四边形A0B1A1C1是菱形,∠A0B1A1=60°,∴△A0B1A1是等边三角形.设△A0B1A1的边长为m1,则B1(,);代入抛物线的解析式中得:()2=,解得m1=0(舍去),m1=1;故△A0B1A1的边长为1,∴则A1点的坐标为(0,1),同理可求得△A1B2A2的边长为2,…依此类推,等边△An﹣1BnAn的边长为n,故菱形An﹣1BnAnCn的周长为4n.故答案为:(0,1);4n.点评:本题考查了二次函数综合题.解题时,利用了二次函数图象上点的坐标特征,菱形的性质,等边三角形的判定与性质等知识点.解答此题的难点是推知等边△An﹣1BnAn的边长为n.三、解答题(本题共26分.第13题~14题,每题各3分;第15题~18题,每题各5分)13.计算:﹣×.考点:二次根式的混合运算.专题:计算题.分析:先进行二次根式的乘法运算,然后化简后合并即可.解答:解:原式=2﹣3=﹣.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.14.解方程:x2﹣6x=3.考点:解一元二次方程-配方法;解一元二次方程-公式法.专题:计算题.分析:方程两边加上9,利用完全平方公式变形后,开方即可求出解.解答:解:配方得:x2﹣6x+9=12,即(x﹣3)2=12,开方得:x﹣3=±2,解得:x1=3+2,x2=3﹣2.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.15.(5分)已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF.求证:BE=DF.考点:矩形的性质;全等三角形的判定与性质;平行四边形的判定与性质.专题:证明题.分析:证法一:根据矩形的对边相等可得AB=CD,四个角都是直角可得∠A=∠C=90°,然后利用“边角边”证明△ABE和△CDF全等,根据全等三角形对应边相等即可得证;证法二:先求出BF=DE,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BFDE为平行四边形,再根据平行四边形的对边相等即可得证.解答:证法一:∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴BE=DF(全等三角形对应边相等);证法二:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,又∵AE=CF,∴AD﹣AE=BC﹣CF,即ED=BF,而ED∥BF,∴四边形BFDE为平行四边形,∴BE=DF(平行四边形对边相等).点评:本题考查了矩形的性质,全等三角形的判定与性质,平行四边形的判定与性质,主要利用了矩形的对边相等的性质,四个角都是直角的性质.16.(5分)已知二次函数y=x2+bx+c的图象经过点A(﹣3,0),B(3,4).求这个二次函数的解析式.考点:待定系数法求二次函数解析式.专题:计算题.分析:直接把A点和B点坐标代入解析式得到关于b和c的方
本文标题:北京市燕山区2013-2014年八年级下期末数学试题含答案解析
链接地址:https://www.777doc.com/doc-7837982 .html