您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 鄂州市鄂城区2015-2016学年八年级下第二次月考数学试卷含解析
2015-2016学年湖北省鄂州市鄂城区八年级(下)第二次月考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列根式中属最简二次根式的是()A.B.C.D.2.设,a在两个相邻整数之间,则这两个整数是()A.1和2B.2和3C.3和4D.4和53.已知a<b,则化简二次根式的正确结果是()A.B.C.D.4.等边三角形的边长为2,则该三角形的面积为()A.4B.C.2D.35.已知a、b、c是三角形的三边长,如果满足(a﹣6)2+=0,则三角形的形状是()A.底与腰不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形6.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A.14B.4C.14或4D.以上都不对7.能判定四边形ABCD为平行四边形的题设是()A.AB∥CD,AD=BCB.AB=CD,AD=BCC.∠A=∠B,∠C=∠DD.AB=AD,CB=CD8.菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分9.如图,过矩形ABCD的四个顶点作对角线AC、BD的平行线,分别相交于E、F、G、H四点,则四边形EFGH为()A.平行四边形B.矩形C.菱形D.正方形10.已知,则的值为()A.B.8C.D.6二、填空题(每题3分,共30分)11.如果最简二次根式与是同类二次根式,那么a=.12.如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=.13.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有m.14.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.15.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.16.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.17.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.18.如图,在平面直角坐标系中,将矩形OABC沿OB对折,使点A落在点A1处,已知OA=,AB=1,则点A1的坐标是.19.已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是.20.观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n(n≥1)个等式写出来.三.解答题(共60分)21.计算:(1)﹣12+(2)(6﹣4)÷2+(﹣2)0.22.已知三角形的三条边长分别是3、x、,求三角形的周长(要求结果化简);并选取自己喜欢的一个数值代入使得周长的结果为整数.23.已知平行四边形ABCD中,BE∥DF,求证:AE=CF.24.如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.25.如图,居民楼与马路是平行的,在一楼的点A处测得它到马路的距离为9m,已知在距离载重汽车41m处就可受到噪声影响.(1)试求在马路上以4m/s速度行驶的载重汽车,能给一楼A处的居民带来多长时间的噪音影响?(2)若时间超过25秒,则此路禁止该车通行,你认为载重汽车可以在这条路上通行吗?26.如图,正方形ABCD的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形OCBA绕点C逆时针旋转角度一个锐角度数α,得到正方形DCFE,ED交线段AB与点G,ED的延长线交线段OA于点H,连CH、CG.(1)求证:△CBG≌△CDG;(2)认真探究,直接写出∠HCG=,HG、OH、BG之间的数量关系为.(3)连接BD、DA、AE、EB得到四边形AEBD,在旋转过程中四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.2015-2016学年湖北省鄂州市鄂城区八年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列根式中属最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的定义对各选项分析判断后利用排除法求解.【解答】解:A、无法化简,故本选项正确;B、=,故本选项错误;C、=2故本选项错误;D、=,故本选项错误.故选:A.2.设,a在两个相邻整数之间,则这两个整数是()A.1和2B.2和3C.3和4D.4和5【考点】估算无理数的大小.【分析】先对进行估算,再确定是在哪两个相邻的整数之间,然后计算介于哪两个相邻的整数之间.【解答】解:∵16<19<25,∴4<<5,∴3<﹣1<4,∴3<a<4,∴a在两个相邻整数3和4之间;故选C.3.已知a<b,则化简二次根式的正确结果是()A.B.C.D.【考点】二次根式的性质与化简.【分析】由于二次根式的被开方数是非负数,那么﹣a3b≥0,通过观察可知ab必须异号,而a<b,易确定ab的取值范围,也就易求二次根式的值.【解答】解:∵有意义,∴﹣a3b≥0,∴a3b≤0,又∵a<b,∴a<0,b≥0,∴=﹣a.故选A.4.等边三角形的边长为2,则该三角形的面积为()A.4B.C.2D.3【考点】等边三角形的性质.【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.【解答】解:∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,∴S△ABC=BC•AD=×2×=,故选B.5.已知a、b、c是三角形的三边长,如果满足(a﹣6)2+=0,则三角形的形状是()A.底与腰不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,在根据勾股定理的逆定理判断其形状是直角三角形.【解答】解:∵(a﹣6)2≥0,≥0,|c﹣10|≥0,又∵(a﹣b)2+=0,∴a﹣6=0,b﹣8=0,c﹣10=0,解得:a=6,b=8,c=10,∵62+82=36+64=100=102,∴是直角三角形.故选D.6.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A.14B.4C.14或4D.以上都不对【考点】勾股定理.【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ABD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC=BD+DC=9+5=14;(2)钝角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ACD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC的长为DC﹣BD=9﹣5=4.故选:C.7.能判定四边形ABCD为平行四边形的题设是()A.AB∥CD,AD=BCB.AB=CD,AD=BCC.∠A=∠B,∠C=∠DD.AB=AD,CB=CD【考点】平行四边形的判定.【分析】根据两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形可得答案.【解答】解:A、AB∥CD,AD=BC不能判定四边形ABCD为平行四边形,故此选项错误;B、AB=CD,AD=BC判定四边形ABCD为平行四边形,故此选项正确;C、∠A=∠B,∠C=∠D不能判定四边形ABCD为平行四边形,故此选项错误;D、AB=AD,CB=CD不能判定四边形ABCD为平行四边形,故此选项错误;故选:B.8.菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分【考点】菱形的性质;矩形的性质.【分析】根据矩形的对角线的性质(对角线互相平分且相等),菱形的对角线性质(对角线互相垂直平分)可解.【解答】解:菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.故选:D.9.如图,过矩形ABCD的四个顶点作对角线AC、BD的平行线,分别相交于E、F、G、H四点,则四边形EFGH为()A.平行四边形B.矩形C.菱形D.正方形【考点】矩形的性质;菱形的判定.【分析】由题意易得四边形EFGH是平行四边形,又因为矩形的对角线相等,可得EH=HG,所以平行四边形EFGH是菱形.【解答】解:由题意知,HG∥EF∥AC,EH∥FG∥BD,HG=EF=AC,EH=FG=BD,∴四边形EFGH是平行四边形,∵矩形的对角线相等,∴AC=BD,∴EH=HG,∴平行四边形EFGH是菱形.故选C.10.已知,则的值为()A.B.8C.D.6【考点】完全平方公式.【分析】首先求出(a+)2=a2++2=10,进而得出(a﹣)2=6,即可得出答案.【解答】解:∵,∴(a+)2=a2++2=10,∴a2+=8,∴a2+﹣2=(a﹣)2=6,∴=.故选:C.二、填空题(每题3分,共30分)11.如果最简二次根式与是同类二次根式,那么a=1.【考点】同类二次根式.【分析】根据同类二次根式的定义建立关于a的方程,求出a的值.【解答】解:∵最简二次根式与是同类二次根式,∴1+a=4a﹣2,解得a=1.故答案为1.12.如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=12.【考点】勾股定理.【分析】根据勾股定理的几何意义解答.【解答】解:∵△ABC直角三角形,∴BC2+AC2=AB2,∵S1=BC2,S2=AC2,S3=AB2,S1=4,S2=8,∴S3=S1+S2=12.13.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有4m.【考点】勾股定理的应用.【分析】利用勾股定理,用一边表示另一边,代入数据即可得出结果.【解答】解:由图形及题意可知,AB2+BC2=AC2设旗杆顶部距离底部有x米,有32+x2=52,得x=4,故答案为4.14.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为2cm2.【考点】菱形的性质;勾股定理.【分析】因为DE丄AB,E是AB的中点,所以AE=1cm,根据勾股定理可求出DE的长,菱形的面积=底边×高,从而可求出解.【解答】解:∵E是AB的中点,∴AE=1cm,∵DE丄AB,∴DE==cm.∴菱形的面积为:2×=2cm2.故答案为:2.15.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=3厘米.【考点】三角形中位线定理;平行四边形的性质.【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF是△OAB的中位线即可得出EF的长度.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3
本文标题:鄂州市鄂城区2015-2016学年八年级下第二次月考数学试卷含解析
链接地址:https://www.777doc.com/doc-7838376 .html