您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 江西省抚州市临川2017届九年级上期中数学试卷含答案解析
2016-2017学年江西省抚州市临川九年级(上)期中数学试卷一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.已知关于x的一元二次方程x2+x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣7B.k≥﹣7C.k≥0D.k≥12.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3米,则地面上阴影部分的面积为()A.0.36π米2B.0.81π米2C.2π米2D.3.24π米23.在某次聚会上,每两人都握了一次手,所有人共握手15次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=15B.x(x+1)=15C.D.4.已知反比例函数y=(k<0)的图象上有两点A(x1,y1),B(x2,y2),且x1<x2,则y1﹣y2的值是()A.正数B.负数C.非正数D.不能确定5.如图,在△ABC中,DE∥BC,=,△ADE的面积是8,则四边形DBCE的面积是()A.10B.18C.8D.46.菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8B.20C.8或20D.10二、填空题(本大题共6小题,每小题3分,共18分)7.若m,n是方程x2+x﹣2=0的两个实数根,则m2+2m+n的值为.8.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE=.9.如图,P是菱形ABCD对角线BD上的一点,PE⊥BC于点E,PE=4cm,则点P到直线AB的距离等于cm.10.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC、BC,若△ABC的面积为3,则k的值是.11.如图,反比例函数y1=的图象与直线y2=k2x+b的一个交点的横坐标为2,当x=3时,y1y2(填“>”、“=”或“<”).12.如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上).若以CEF为顶点的△与以ABC为顶点的三角形相似且AC=3,BC=4时,则AD的长为.三、解答题(共11小题,满分84分)13.解方程:x(x﹣2)+x﹣2=0.14.己知反比例函数y=(k常数,k≠1).(1)若点A(2,1)在这个函数的图象上,求k的值;(2)若k=9,试判断点B(﹣,﹣16)是否在这个函数的图象上,并说明理由.15.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.16.在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y=图象上的所有“整点”A1,A2,A3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率.17.矩形ABCD的边AB、BC的长分别是关于x的方程x2+(2m﹣1)x+m2+3=0的根.(1)若矩形ABCD是正方形,求m的值.(2)若矩形ABCD的面积为12时,求m的值.18.已知如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.19.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?20.如图,直线y=﹣2x+2与x轴、y轴分别相交于点A和B.(1)直接写出坐标:点A,点B;(2)以线段AB为一边在第一象限内作▱ABCD,其顶点D(3,1)在双曲线y=(x>0)上.①求证:四边形ABCD是正方形;②试探索:将正方形ABCD沿x轴向左平移多少个单位长度时,点C恰好落在双曲线y=(x>0)上.21.如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD=.(1)求证:△ABP∽△PCD;(2)求△ABC的边长.22.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=,PD=.(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度.23.在平面直角坐标系中,四边形ABOC是边长为1的正方形,其中点B、C分别在x轴和y轴上,点M为y轴负半轴上一动点,点N为x轴正半轴上一动点,且∠NAM=45°.(1)试说明△OAN∽△OMA;(2)随着点N的变化,探求△OMN的面积是否发生变化?如果△OMN的面积不变,求出△OMN的面积;如果面积发生变化,请说明理由;(3)当△AMN为等腰三角形时,请求出点N的坐标.2016-2017学年江西省抚州市临川九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.已知关于x的一元二次方程x2+x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣7B.k≥﹣7C.k≥0D.k≥1【考点】根的判别式.【分析】根据方程有两个不相等的实数根可知△>0,再由二次根式有意义的条件得出k﹣1≥0,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程x2+x﹣1=0有两个不相等的实数根,∴,解得k≥1.故选D.2.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3米,则地面上阴影部分的面积为()A.0.36π米2B.0.81π米2C.2π米2D.3.24π米2【考点】相似三角形的应用.【分析】桌面离地面1米.若灯泡离地面3米,则灯泡离桌面是2米,桌面与阴影是相似图形,相似比是2:3,两个图形的半径的比就是相似比,设阴影部分的直径是xm,则1.2:x=2:3解得:x=1.8,因而地面上阴影部分的面积为0.81π米2.【解答】解:设阴影部分的直径是xm,则1.2:x=2:3解得x=1.8,所以地面上阴影部分的面积为:S=πr2=0.81πm2.故选B.3.在某次聚会上,每两人都握了一次手,所有人共握手15次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=15B.x(x+1)=15C.D.【考点】由实际问题抽象出一元二次方程.【分析】如果有x人参加了聚会,则每个人需要握手(x﹣1)次,x人共需握手x(x﹣1)次;而每两个人都握了一次手,因此要将重复计算的部分除去,即一共握手:次;已知“所有人共握手15次”,据此可列出关于x的方程.【解答】解:设x人参加这次聚会,则每个人需握手:x﹣1(次).根据题意,得=15.故选:C.4.已知反比例函数y=(k<0)的图象上有两点A(x1,y1),B(x2,y2),且x1<x2,则y1﹣y2的值是()A.正数B.负数C.非正数D.不能确定【考点】反比例函数图象上点的坐标特征.【分析】由于自变量所在象限不定,那么相应函数值的大小也不定.【解答】解:∵函数值的大小不定,若x1、x2同号,则y1﹣y2<0;若x1、x2异号,则y1﹣y2>0.故选D.5.如图,在△ABC中,DE∥BC,=,△ADE的面积是8,则四边形DBCE的面积是()A.10B.18C.8D.4【考点】相似三角形的判定与性质.【分析】根据DE∥BC,于是得到△ADE∽△ABC,根据相似三角形的性质得到=()2=,由△ADE的面积是8,得到△ABC的面积=18,即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴到=()2=,∵△ADE的面积是8,∴△ABC的面积=18,∴四边形DBCE的面积是10.故选:A.6.菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8B.20C.8或20D.10【考点】菱形的性质;解一元二次方程-因式分解法.【分析】边AB的长是方程y2﹣7y+10=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.【解答】解:∵解方程y2﹣7y+10=0得:y=2或5∵对角线长为6,2+2<6,不能构成三角形;∴菱形的边长为5.∴菱形ABCD的周长为4×5=20.故选B.二、填空题(本大题共6小题,每小题3分,共18分)7.若m,n是方程x2+x﹣2=0的两个实数根,则m2+2m+n的值为1.【考点】根与系数的关系.【分析】根据根与系数的关系可得出m+n=﹣1、mn=﹣2,将m2+2m+n变形为﹣mn+(m+n),再代入数据即可得出结论.【解答】解:∵m,n是方程x2+x﹣2=0的两个实数根,∴m+n=﹣1,mn=﹣2,∴m2+2m+n=m2+m+m+n=m[m﹣(m+n)]+(m+n)=﹣mn+(m+n)=2﹣1=1.故答案为:1.8.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE=4.5.【考点】位似变换;坐标与图形性质.【分析】根据位似图形的性质得出AO,DO的长,进而得出==,求出DE的长即可.【解答】解:∵△ABC与DEF是位似图形,它们的位似中心恰好为原点,已知A点坐标为(1,0),D点坐标为(3,0),∴AO=1,DO=3,∴==,∵AB=1.5,∴DE=4.5.故答案为:4.5.9.如图,P是菱形ABCD对角线BD上的一点,PE⊥BC于点E,PE=4cm,则点P到直线AB的距离等于4cm.【考点】菱形的性质.【分析】利用菱形的性质,得BD平分∠ABC,利用角平分线的性质,得结果.【解答】解:如图,过点P作PF⊥AB于点F,∵四边形ABCD是菱形,∴BD平分∠ABC,∵PE⊥BC,PE=4,∴PF=PE=4,即点P到AB的距离等于4,故答案是:4.10.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC、BC,若△ABC的面积为3,则k的值是﹣6.【考点】反比例函数系数k的几何意义.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△CAB=3,再根据反比例函数的比例系数k的几何意义得到|k|=3,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣6.故答案为:﹣6.11.如图,反比例函数y1=的图象与直线y2=k2x+b的一个交点的横坐标为2,当x=3时,y1<y2(填“>”、“=”或“<”).【考点】反比例函数与一次函数的交点问题.【分析】观察x=3的图象的位置,即可解决问题.【解答】解:观察图象可知,x=3时,反比例函数图象在一次函数的图象的下面,所以y1<y2.故答案为:<.12.如图,在Rt△ABC中,∠C=90°,翻折∠C,使
本文标题:江西省抚州市临川2017届九年级上期中数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7839335 .html