您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 深圳市南山区2015-2016学年八年级下期末数学试卷含答案解析
2015-2016学年广东省深圳市南山区八年级(下)期末数学试卷一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式2x+1>x+2的解集是()A.x>1B.x<1C.x≥1D.x≤12.多项式2x2﹣2y2分解因式的结果是()A.2(x+y)2B.2(x﹣y)2C.2(x+y)(x﹣y)D.2(y+x)(y﹣x)3.下列图案中,不是中心对称图形的是()A.B.C.D.4.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是()A.6cmB.7cmC.8cmD.9cm5.要使分式有意义,那么x的取值范围是()A.x≠3B.x≠3且x≠﹣3C.x≠0且x≠﹣3D.x≠﹣36.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a<﹣1B.a<0C.a>﹣1D.a>0a<﹣17.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4B.3C.D.28.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cmB.6cmC.cmD.cm9.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,若AE=4,AF=6,平行四边形ABCD的周长为40.则平行四边形ABCD的面积为()A.24B.36C.40D.4810.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3C.x>D.x>311.已知a2+b2=6ab,则的值为()A.B.C.2D.±212.△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,P为线段AB上一动点,D为BC上中点,则PC+PD的最小值为()A.B.3C.D.二、填空题:(本题有4小题,每小题3分,共12分)13.分解因式:2x2﹣4x+2=.14.一个多边形的内角和与外角和的比是4:1,则它的边数是.15.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.16.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则BE的长是.三、解答题(本大题有七道题,其中17题6分,18题7分,19题7分,20题7分,21题7分,22题9分,23题9分,共52分;)17.解方程:.18.解不等式组:.19.先化简,再求值:,其中a满足方程a2+4a+1=0.20.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1,然后将△A1B1C1绕点A1顺时针旋转90°得到△A1B2C2.(1)在网格中画出△A1B1C1和△A1B2C2;(2)计算线段AC在变换到A1C2的过程中扫过区域的面积(重叠部分不重复计算)21.如图,在△ABC中,D、E分别是AB、AC的中点,F是DE延长线上的点,且EF=DE(1)图中的平行四边形有哪几个?请选择其中一个说明理由;(2)若△AEF的面积是3,求四边形BCFD的面积.22.我县某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?23.已知两个共一个顶点的等腰直角△ABC和等腰直角△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.2015-2016学年广东省深圳市南山区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式2x+1>x+2的解集是()A.x>1B.x<1C.x≥1D.x≤1【考点】解一元一次不等式.【分析】先移项,再合并同类项,把x的系数化为1即可.【解答】解:移项得,2x﹣x>2﹣1,合并同类项得,x>1,故选A【点评】本题考查的是在解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.2.多项式2x2﹣2y2分解因式的结果是()A.2(x+y)2B.2(x﹣y)2C.2(x+y)(x﹣y)D.2(y+x)(y﹣x)【考点】提公因式法与公式法的综合运用.【分析】首先提公因式2,再利用平方差进行分解即可.【解答】解:2x2﹣2y2=2(x2﹣y2)=2(x+y)(x﹣y),股癣:C.【点评】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.3.下列图案中,不是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项正确;C、是中心对称图形,故C选项错误;D、是中心对称图形,故D选项错误;故选:B.【点评】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.4.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是()A.6cmB.7cmC.8cmD.9cm【考点】线段垂直平分线的性质.【分析】由于AB的垂直平分线交AC于D,所以AD=BD,而△DBC的周长=BD+CD+BC=AD+CD+BC=AC+BC,而AC=5cm,BC=4cm,由此即可求出△DBC的周长.【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∴△DBC的周长=BD+CD+BC=AD+CD+BC=AC+BC,而AC=5cm,BC=4cm,∴△DBC的周长是9cm.故选:D.【点评】此题主要考查了线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.结合图形,进行线段的等量代换是正确解答本题的关键.5.要使分式有意义,那么x的取值范围是()A.x≠3B.x≠3且x≠﹣3C.x≠0且x≠﹣3D.x≠﹣3【考点】分式有意义的条件.【分析】根据分式有意义的条件列出关于x的不等式,求解即可.【解答】解:∵x2+6x+9≠0,∴(x+3)2≠0,∴x+3≠0,∴x≠﹣3,∴分式有意义,x的取值范围x≠﹣3,故选D.【点评】本题考查了分式有意义的条件:分母不为0,掌握不等式的解法是解题的关键.6.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a<﹣1B.a<0C.a>﹣1D.a>0a<﹣1【考点】解一元一次不等式.【分析】根据不等式的性质,两边同时除以a+1,a+1是正数还是负数不确定,所以要分两种情况,再根据解集为x<1,发现不等号的符号发生了变化,所以确定a+1<0,从而得到答案.【解答】解:(a+1)x>a+1,当a+1>0时,x>1,当a+1<0时,x<1,∵解集为x<1,∴a+1<0,a<﹣1.故选:A.【点评】此题主要考查了解不等式,当不等式两边除以同一个数时,这个数的正负性直接影响不等号.7.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4B.3C.D.2【考点】平行四边形的性质.【分析】根据平行四边形性质得出AB=DC,AD∥BC,推出∠DEC=∠BCE,求出∠DEC=∠DCE,推出DE=DC=AB,得出AD=2DE即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3,故选:B.【点评】本题考查了平行四边形性质,平行线性质,角平分线定义,等腰三角形的性质和判定的应用,关键是求出DE=AE=DC.8.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cmB.6cmC.cmD.cm【考点】含30度角的直角三角形;等腰直角三角形.【分析】过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角边,再由等腰直角三角形求出最大边.【解答】解:过点C作CD⊥AD,∴CD=3,在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×3=6,又∵三角板是有45°角的三角板,∴AB=AC=6,∴BC2=AB2+AC2=62+62=72,∴BC=6,故选:D.【点评】此题考查的知识点是含30°角的直角三角形及等腰直角三角形问题,关键是先求得直角边,再由勾股定理求出最大边.9.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,若AE=4,AF=6,平行四边形ABCD的周长为40.则平行四边形ABCD的面积为()A.24B.36C.40D.48【考点】平行四边形的性质.【分析】已知平行四边形的高AE、AF,设BC=xcm,则CD=(20﹣x)cm,根据“等面积法”列方程,求BC,从而求出平行四边形的面积.【解答】解:设BC=xcm,则CD=(20﹣x)cm,根据“等面积法”得4x=6(20﹣x),解得x=12,∴平行四边形ABCD的面积=4x=4×12=48.故选D.【点评】本题应用的知识点为:平行四边形一组邻边之和为平行四边形周长的一半,平行四边形的面积=底×高,可用两种方法表示.10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3C.x>D.x>3【考点】一次函数与一元一次不等式.【分析】先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.【解答】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选A.【点评】此题考查的是用图象法来解不等式,充分理解一次函数与不等式的联系是解决问题的关键.11.已知a2+b2=6ab,则的值为()A.B.C.2D.±2【考点】分式的值.【分析】首先由a2+b2=6ab,即可求得:(a+b)2=8ab,(a﹣b)2=4ab,然后代入即可求得答案.【解答】解:∵a2+b2=6ab,∴a2+b2+2ab=8ab,a2+b2﹣2ab=4ab,即:(a+b)2=8ab,(a﹣b)2=4ab,a+b=±2,a﹣b=±2,∴当a+b=2,a﹣b=2时,=;当a+b=2,a﹣b=﹣2时,=﹣;当a+b=﹣2,a﹣b=2时,=﹣;当a+b=﹣2,a﹣b=﹣2时,=.故选:B.【点评】本题主要考查完全平方公式.注意熟记公式的几个变形
本文标题:深圳市南山区2015-2016学年八年级下期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7840446 .html