您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 天津市河西区2016-2017学年八年级上期中数学模拟试卷含解析
2016-2017学年天津市河西区八年级(上)期中数学模拟试卷一、选择题(共12小题,每小题3分,满分36分)1.下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.下列说法:①能够完全重合的图形叫做全等形;②全等三角形的对应边相等、对应角相等;③全等三角形的周长相等、面积相等;④所有的等边三角形都全等;⑤面积相等的三角形全等.其中正确的说法有()A.5个B.4个C.3个D.2个3.在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点4.等腰三角形的一个角是80°,则它的顶角的度数是()A.30°B.80°或20°C.80°或50°D.20°5.如图,把△ABC沿AD折叠,使点C落在AB上点E处,那么折痕AD是△ABC的()A.角平分线B.中线C.高线D.角平分线6.如图,∠CBD、∠ADE为△ABD的两个外角,∠CBD=70°,∠ADE=149°,则∠A的度数是()A.28°B.31°C.39°D.42°7.如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F的度数为()A.62°B.152°C.208°D.236°8.如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为()A.α﹣βB.β﹣αC.180°﹣α+βD.180°﹣α﹣β9.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.30°B.40°C.50°D.60°10.如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS中()A.全部正确B.仅①和③正确C.仅①正确D.仅①和②正确11.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFDB.BE=ECC.BF=DF=CDD.FD∥BC12.为了加快灾后重建的步伐,我市某镇要在三条公路围成的一块平地上修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处B.有四处C.有七处D.有无数处二、填空题:13.如图,△ABC中,∠A=40°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度.14.如图,若△ABC≌△ADE,且∠B=65°,则∠BAD=.15.直角三角形的两个锐角的平分线所交成的角的度数是.16.如图:(1)在△ABC中,BC边上的高是;(2)在△AEC中,AE边上的高是;(3)在△FEC中,EC边上的高是;(4)若AB=CD=2cm,AE=3cm,则S△ACE=,CE=,BE=.17.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为.18.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为64和42,则△EDF的面积为.19.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是.20.如图,已知AB=A1B,A1C=A1A2,A2D=A2A3,A3E=A3A4,…,以此类推,若∠B=20°,则∠A=.三、综合题:21.如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.22.如图,∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE的度数.23.已知:如图,在四边形ABCD中,AD∥BC,∠BDC=∠BCD,点E是线段BD上一点,且BE=AD.证明:△ADB≌△EBC.24.如图,△ABC中,AD平分∠CAB,BD⊥AD,DE∥AC.求证:AE=BE.25.如图,OC是∠AOB平分线,点P为OC上一点,若∠PDO+∠PEO=180°,试判断PD和PE大小关系,并说明理由.26.已知△ABC中,∠A=50°.(1)如图①,∠ABC、∠ACB的角平分线交于点O,则∠BOC=°.(2)如图②,∠ABC、∠ACB的三等分线分别对应交于O1、O2,则∠BO2C=°.(3)如图③,∠ABC、∠ACB的n等分线分别对应交于O1、O2…On﹣1(内部有n﹣1个点),求∠BOn﹣1C(用n的代数式表示).(4)如图③,已知∠ABC、∠ACB的n等分线分别对应交于O1、O2…On﹣1,若∠BOn﹣1C=60°,求n的值.27.已知△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,若E、F分别是AB、AC上的点,且BE=AF.求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.28.如图,△ABC和△ADE都是等边三角形,BD与CE相交于O.(1)求证:BD=CE;(2)OA平分∠BOE吗?说明理由.2016-2017学年天津市河西区八年级(上)期中数学模拟试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列说法:①能够完全重合的图形叫做全等形;②全等三角形的对应边相等、对应角相等;③全等三角形的周长相等、面积相等;④所有的等边三角形都全等;⑤面积相等的三角形全等.其中正确的说法有()A.5个B.4个C.3个D.2个【考点】全等三角形的判定与性质.【专题】推理填空题.【分析】理清全等形以及全等三角形的判定及性质,即可熟练求解此题.【解答】解:①中能够完全重合的图形叫做全等形,正确;②中全等三角形的对应边相等、对应角相等,正确;③全等三角形的周长相等、面积相等,也正确;④中所有的等边三角形角都是60°,但由于边不相等,所以不能说其全等,④错误;⑤中面积相等的三角形并不一定是全等三角形,⑤中说法错误;故题中①②③说法正确,④⑤说法错误,此题选C.【点评】本题主要考查了全等三角形的判定及性质,能够掌握并熟练运用.3.在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点【考点】线段垂直平分线的性质.【分析】由在△ABC内一点P满足PA=PB=PC,可判定点P在AB,BC,AC的垂直平分线上,则可求得答案.【解答】解:∵在△ABC内一点P满足PA=PB=PC,∴点P一定是△ABC三边垂直平分线的交点.故选B.【点评】此题考查了线段垂直平分线的性质.此题比较简单,注意熟记定理是解此题的关键.4.等腰三角形的一个角是80°,则它的顶角的度数是()A.30°B.80°或20°C.80°或50°D.20°【考点】等腰三角形的性质.【分析】分80°角是顶角与底角两种情况讨论求解.【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选:B.【点评】本题考查了等腰三角形两底角相等的性质,难点在于要分情况讨论求解.5.如图,把△ABC沿AD折叠,使点C落在AB上点E处,那么折痕AD是△ABC的()A.角平分线B.中线C.高线D.角平分线【考点】翻折变换(折叠问题).【分析】根据折叠的性质即可得到结论.【解答】解:∵把△ABC沿AD折叠得到△ADE,∴△ACD≌△AED,∴∠CAD=∠EAD,∴AD是△ABC的角平分线.故选A.【点评】本题考查了翻折变换﹣折叠问题,正确理解折叠的性质是本题的关键.6.如图,∠CBD、∠ADE为△ABD的两个外角,∠CBD=70°,∠ADE=149°,则∠A的度数是()A.28°B.31°C.39°D.42°【考点】三角形的外角性质;对顶角、邻补角.【专题】计算题.【分析】根据平角的定义求出∠ABD,根据三角形的外角性质得出∠ADE=∠ABD+∠A,代入即可求出答案.【解答】解:∵∠ABD+∠CBD=180°,∠CBD=70°,∴∠ABD=110°,∵∠ADE=∠ABD+∠A,∠ADE=149°,∴∠A=39°.故选C.【点评】本题主要考查对三角形的外角性质,邻补角的定义等知识点的理解和掌握,能灵活运用三角形的外角性质进行计算是解此题的关键.7.如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F的度数为()A.62°B.152°C.208°D.236°【考点】三角形内角和定理.【分析】首先求出∠F+∠B=∠D+∠EGD,然后证明出∠C+∠A+∠F+∠B﹣∠D=180°,最后结合题干∠D=28°求出∠A+∠B+∠C+∠F的度数.【解答】解:∵如图可知∠BED=∠F+∠B,∠CGE=∠C+∠A,又∵∠BED=∠D+∠EGD,∴∠F+∠B=∠D+∠EGD,又∵∠CGE+∠EGD=180°,∴∠C+∠A+∠F+∠B﹣∠D=180°,又∵∠D=28°,∴∠A+∠B+∠C+∠F=180°+28°=208°,故选:C.【点评】本题主要考查了三角形内角和定理的知识,解答本题的关键是求出∠C+∠A+∠F+∠B﹣∠D=180°,此题难度不大.8.如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为()A.α﹣βB.β﹣αC.180°﹣α+βD.180°﹣α﹣β【考点】三角形的外角性质.【分析】根据β为角x和α的对顶角所在的三角形的外角,再根据三角形一个外角等于和它不相邻的两个内角的和解答.【解答】解:如图,∵α=∠1,∴β=x+∠1整理得:x=β﹣α.故选B.【点评】本题主要利用三角形外角的性质求解,需要熟练掌握并灵活运用.9.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.30°B.40°C.50°D.60°【考点】全等三角形的性质.【分析】根据邻补角的定义求出∠AED,再根据全等三角形对应边相等可得AD=AE,然后利用等腰三角形的两底角相等列式计算即可得解.【解答】解:∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.故选B.【点评】本题考查了全等三角形的性质,等腰三角形的判定与性质,熟记性质并准确识图是解题的关键.10.如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS中()A.全部正确B.仅①和③正确C.仅①正确D.仅①和②正确【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】易证RT△APR≌RT△APS,可得AS=AR,∠BAP=∠1,再根据AQ=PQ,可得∠1=∠2,即可求得QP∥AB,即可解题.【解答】解:如图,在RT△APR和RT△APS中,,∴RT△APR≌RT△APS(HL),∴∠AR=
本文标题:天津市河西区2016-2017学年八年级上期中数学模拟试卷含解析
链接地址:https://www.777doc.com/doc-7840750 .html