您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 孝感市孝南区2015-2016学年八年级上期末数学试卷含答案解析
2015-2016学年湖北省孝感市孝南区八年级(上)期末数学试卷一、选择题:本题10小题,每小题3分,共30分,每小题只有一个选项是正确的,请将正确的选项填在后面的答题栏内.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.如果分式的值为0,则x的值是()A.1B.0C.﹣1D.±13.点M(﹣2,1)关于x轴的对称点N的坐标是()A.(2,1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,﹣1)4.下列各式由左边到右边的变形中,是分解因式的是()A.m(x﹣y)=mx﹣myB.x2+2x+1=x(x+2)+1C.a2+1=a(a+)D.15x2﹣3x=3x(5x﹣1)5.如图,AD∥BC,AD=CB,要使△ADF≌△CBE,需要添加的下列选项中的一个条件是()A.AE=CFB.DF=BEC.∠A=∠CD.AE=EF6.下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=aC.(﹣a)3•a2=﹣a6D.(2a2)3=6a67.长为9,6,3,4的四根木条,选其中三根组成三角形,选法()A.1种B.2种C.3种D.4种8.解分式方程+2=,可知方程()A.解为x=2B.解为x=4C.解为x=3D.无解9.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是()A.45°B.50°C.55°D.60°10.如图,△ABM与△CDM是两个全等的等边三角形,MA⊥MD.有下列四个结论:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直线MB垂直平分线段CD;(4)四边形ABCD是轴对称图形.其中正确结论的个数为()A.1个B.2个C.3个D.4二、填空题:每题3分,共计18分。11.计算:4x2y÷(﹣)=__________.12.若x2+2(m﹣3)x+16是完全平方式,则m=__________.13.如图,∠2+∠3+∠4=320°,则∠1=__________.14.如图,坐标平面上,△ABC≌△FDE,若A点的坐标为(a,1),BC∥x轴,B点的坐标为(b,﹣3),D、E两点在y轴上,则F点到y轴的距离为__________.15.等腰三角形的周长为16,其一边长为6,则另两边的长为__________.16.有一个计算程序,每次运算这种运算的过程如下:则第n次运算的结果yn__________.(用含有x和n的式子表示)三、解答题:本大题共8小题,共72分。17.(1)计算:(2)分解因式:2ma2﹣8mb2.18.已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.19.(1)解方程:(2)化简方程:(m﹣)(m在0,1,﹣2这三个值取一个合适的值)20.如图,已知锐角三角形ABC.(1)用尺规作BC的垂直平分线l和∠B的平分线BM;(2)若l与BM交于P,∠A=60°,∠ACP=24°,则∠ABP=__________度.21.如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于D,过C作CN⊥AD交AD于H,交AB于N.(1)求证:△ANC为等腰三角形;(2)试判断BN与CD的数量关系,并说明理由.22.如图,在等边△ABC中,点D为AC上一点,CD=CE,∠ACE=60°.(1)求证:△BCD≌△ACE;(2)延长BD交AE于F,连接CF,若AF=CF,猜想线段BF、AF的数量关系,并证明你的猜想.23.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?24.如图(1),直线AB与x轴负半轴、y轴的正半轴分别交于A、B、OA、OB的长分别为a、b,且满足a2﹣2ab+b2=0.(1)判断△AOB的形状;(2)如图(2)过坐标原点作直线OQ交直线AB于第二象限于点Q,过A、B两点分别作AM⊥OQ、BN⊥OQ,若AM=7,BN=4,求MN的长;(3)如图(3),E为AB上一动点,以AE为斜边作等腰直角三角形ADE,P为BE的中点,延长DP至F,使PF=DP,连结PO,BF,试问DF、PO是否存在确定的位置关系和数量关系?写出你的结论并证明.2015-2016学年湖北省孝感市孝南区八年级(上)期末数学试卷一、选择题:本题10小题,每小题3分,共30分,每小题只有一个选项是正确的,请将正确的选项填在后面的答题栏内.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如果分式的值为0,则x的值是()A.1B.0C.﹣1D.±1【考点】分式的值为零的条件.【分析】根据分子为零分母不为零分式的值为零,可得答案.【解答】解:由分式的值为0,得|x|﹣1=0且2x+2≠0.解得x=1,故选:A.【点评】本题考查了合并同类项,分子为零分母不为零分式的值为零是解题关键.3.点M(﹣2,1)关于x轴的对称点N的坐标是()A.(2,1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据两点关于x轴对称,横坐标不变,纵坐标互为相反数即可得出结果.【解答】解:根据两点关于x轴对称,横坐标不变,纵坐标互为相反数,∴点M(﹣2,1)关于x轴的对称点的坐标是(﹣2,﹣1),故选:C.【点评】本题主要考查了两点关于x轴对称,横坐标不变,纵坐标互为相反数,比较简单.4.下列各式由左边到右边的变形中,是分解因式的是()A.m(x﹣y)=mx﹣myB.x2+2x+1=x(x+2)+1C.a2+1=a(a+)D.15x2﹣3x=3x(5x﹣1)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式乘积的形式,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式.5.如图,AD∥BC,AD=CB,要使△ADF≌△CBE,需要添加的下列选项中的一个条件是()A.AE=CFB.DF=BEC.∠A=∠CD.AE=EF【考点】全等三角形的判定.【分析】求出AF=CE,根据平行线的性质得出∠A=∠C,根据全等三角形的判定推出即可.【解答】解:只有选项A正确,理由是:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵AD∥BC,∴∠A=∠C,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),故选A.【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,主要考查学生的推理能力和辨析能力.6.下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=aC.(﹣a)3•a2=﹣a6D.(2a2)3=6a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【专题】计算题.【分析】A、原式不能合并;B、原式先计算乘方运算,再计算除法运算即可得到结果;C、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断;D、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式不能合并,故A错误;B、原式=a2÷a=a,故B正确;C、原式=﹣a3•a2=﹣a5,故C错误;D、原式=8a6,故D错误.故选:B.【点评】此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.7.长为9,6,3,4的四根木条,选其中三根组成三角形,选法()A.1种B.2种C.3种D.4种【考点】三角形三边关系.【分析】要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.【解答】解:四根木条的所有组合:9,6,3和9,6,4和6,3,4和9,3,4;根据三角形的三边关系,得能组成三角形的有9,6,4和3,6,44.故选:B.【点评】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.8.解分式方程+2=,可知方程()A.解为x=2B.解为x=4C.解为x=3D.无解【考点】解分式方程.【分析】根据解分式方程的一般步骤,可得分式方程的解.【解答】解:去分母,得1﹣x+2(x﹣2)=﹣1.去括号,得1﹣x+2x﹣4=﹣1.移项,得﹣x+2x=﹣1﹣1+4.合并同类项,得x=2.检验:当x=2时,x﹣2=0,x=2不是分式方程的解,原分式方程无解.故选:D.【点评】本题考查了解分式方程,注意检验是不可缺少的一步.9.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是()A.45°B.50°C.55°D.60°【考点】线段垂直平分线的性质.【分析】首先连接AC,由AE的垂直平分线MN交BE于点C,可得AC=EC,又由AB+BC=BE,易证得AB=AC,然后由等腰三角形的性质与三角形内角和定理,求得∠BAE=∠BAC+∠CAE=180°﹣4∠E+∠E=105°,继而求得答案.【解答】解:连接AC,∵MN是AE的垂直平分线,∴AC=EC,∴∠CAE=∠E,∵AB+BC=BE,BC+EC=BE,∴AB=EC=AC,∴∠B=∠ACB,∵∠ACB=∠CAE+∠E=2∠E,∴∠B=2∠E,∴∠BAC=180°﹣∠B﹣∠ACB=180°﹣4∠E,∵∠BAE=∠BAC+∠CAE=180°﹣4∠E+∠E=105°,解得:∠E=25°,∴∠B=2∠E=50°.故选B.【点评】此题考查了线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.10.如图,△ABM与△CDM是两个全等的等边三角形,MA⊥MD.有下列四个结论:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直线MB垂直平分线段CD;(4)四边形ABCD是轴对称图形.其中正确结论的个数为()A.1个B.2个C.3个D.4【考点】轴对称图形;全等三角形的性质;线段垂直平分线的性质;等边三角形的性质.【分析】(1)△ABM和△CDM是全等的等边三角形,那么可知这两个三角形的内角都等于60°,所有的边都相等,即知∠AMB=∠CMD=60°,又MA⊥MD,故∠AMD=90°,利用周角概念可求∠BMC,而BM=CM,结合三角形内角和等于180°,可求∠MBC、∠MCB;(2)由于MA⊥MB,则∠AMD=90°,而MA=MD,那么∠MDA=45°,又∠MDC=60°,可求∠ADC=105°,由(1)中可知∠MBC=15°,则∠ABC=60°+15°=75°,所以∠ADC+∠ABC=180°;(3)延长BM交CD于N,∠NMC是△BMC的外角,可求∠NMC=30°,即知MN是△CDM的角平分线,根据等腰三角形三线合一性质可知MB垂直平分CD;(4)利用(2)中的方法可求∠BAD=105°,∠BCD=75°,易证∠BAD+∠ABC=180°,则AD∥BC,又∵AB=DC
本文标题:孝感市孝南区2015-2016学年八年级上期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7841097 .html