您好,欢迎访问三七文档
圆柱与圆锥易错题目一、圆柱与圆锥1.一个圆锥形沙堆,底面周长是31.4米,高是1.2米.每立方米黄沙重2吨,这堆黄沙重多少吨?【答案】解:底面半径:31.4÷(2×3.14)=31.4÷6.28=5(米)这堆沙子的总重量:×3.14×52×1.2×2=3.14×25×0.4×2=78.5×0.4×2=31.4×2=62.8(吨)答:这堆黄沙重62.8吨。【解析】【分析】用底面周长除以圆周率的2倍即可求出底面半径。根据圆锥的体积公式计算出沙子的体积,再乘每立方米沙子的重量即可求出总重量。2.一个圆锥体形的沙堆,底面周长是25.12米,高1.8米,用这堆沙在8米宽的公路上铺5厘米厚的路面,能铺多少米?【答案】解:5厘米=0.05米沙堆的底面半径:25.12÷(2×3.14)=25.12÷6.28=4(米)沙堆的体积:×3.14×42×1.8=3.14×16×0.6=3.14×9.6=30.144(立方米)所铺沙子的长度:30.144÷(8×0.05)=30.144÷0.4=75.36(米).答:能铺75.36米。【解析】【分析】根据1米=100厘米,先将厘米化成米,除以进率100,然后求出沙堆的底面半径,用公式:C÷2π=r,要求沙堆的体积,用公式:V=πr2h,最后用沙堆的体积÷(公路的宽×铺沙的厚度)=铺沙的长度,据此列式解答.3.计算下面圆柱的表面积。(单位:厘米)【答案】解:3.14×(4÷2)²×2+3.14×4×6=100.48(平方厘米)【解析】【分析】圆柱体的表面积是两个底面积加上一个侧面积,底面积根据圆面积公式计算,用底面周长乘高求出侧面积。4.如下图,已知圆锥底面周长是18.84dm,求圆锥的体积。【答案】解:18.84÷3.14÷2=3(dm)3.14×3²×5×=3.14×15=47.1(dm²)【解析】【分析】用底面周长除以3.14再除以2求出底面半径,然后用底面积乘高再乘求出体积。5.图“蒙古包”是由一个近似的圆柱形和一个近似的圆锥形组成,这个蒙古包的空间大约是多少立方米?【答案】解:3.14×(8÷2)2×2+3.14×(8÷2)2×1×=3.14×16×2+3.14×16×1×≈100.48+16.75=117.23(立方米)答:这个蒙古包所占的空间大约是117.23立方米。【解析】【分析】这个蒙古包是由圆锥和圆柱组成,所以这个蒙古包的空间是圆锥的体积和圆柱的体积,圆柱的底面半径=底面直径÷2,圆柱的底面积=圆锥的底面积,所以圆柱的体积=πr2h,那么圆锥的体积=πr2h。6.一个圆锥形沙堆,底面积是45.9m2,高1.2m.用这堆沙在12m宽的路面上铺3cm厚的路基,能铺多少米?【答案】解:3厘米=0.03米×45.9×1.2÷(12×0.03)=18.36÷0.36=51(米)答:能铺51米。【解析】【分析】现根据圆锥的体积=×底面积×高求出圆锥形沙堆的体积,然后根据长方体的体积=长×宽×高,求出铺路的长度即可。7.把三角形ABC以AB为轴旋转一周得到一个立体图形,计算如图所示立体图形的体积.(单位:cm)【答案】解:×3.14×62×15=3.14×36×5=565.2(立方厘米)答:它的体积是565.2立方厘米.【解析】【分析】得到圆锥的底面半径是6cm,高是15cm,用底面积乘高再乘即可求出得到的立体图形的体积。8.一个圆柱体容器的底面直径是16厘米,容器中盛有10厘米深的水,现在把一个圆锥形铁块浸没到水中,水面上升了3厘米,圆锥形铁块的体积是多少立方厘米?【答案】解:3.14×(16÷2)2×3=3.14×64×3=200.96×3=602.88(立方厘米)答:圆锥形铁块体积是602.88立方厘米。【解析】【分析】水面上升部分水的体积就是圆锥的体积,因此用圆柱的底面积乘水面上升的高度即可求出圆锥的体积。9.一个圆锥形沙堆,高是1.8米,底面半径是5米,每立方米沙重1.7吨,这堆沙约重多少吨?【答案】解:沙堆的体积:×3.14×52×1.8=×3.14×25×1.8=47.1(立方米)沙堆的重量:1.7×47.1≈80.07(吨)答:这堆沙约重80.07吨。【解析】【分析】根据圆锥的体积公式先计算出沙堆的体积,再乘每立方米沙的重量即可求出这堆沙的重量。10.把一个底面半径是6厘米,高10厘米的圆锥形容器里灌满水,然后倒入一个底面半径是5厘米的圆柱形容器里,求圆柱形容器里水面的高度。【答案】解:×3.14×62×10÷(3.14×52)=4.8(厘米)答:圆柱形容器里水面的高度4.8厘米。【解析】【解答】×3.14×62×10÷(3.14×52)=×3.14×62×10÷(3.14×25)=×3.14×62×10÷78.5=3.14×12×10÷78.5=37.68×10÷78.5=376.8÷78.5=4.8(厘米)答:圆柱形容器里水面的高度4.8厘米。【分析】根据题意可知,先求出圆锥形容器的容积,用公式:V=πr2h,然后除以圆柱的底面积,即可得到圆柱形容器里水面的高度,据此列式解答.11.一个底面直径为20厘米的圆柱形容器里,盛有一些水。把一个底面半径为3厘米的圆锥形铅锤完全浸没在水中,水面上升0.3厘米,这个铅锤的高是多少厘米?【答案】解:3.14×(20÷2)2×0.3÷÷(3.14×32)=10(厘米)答:这个铅锤的高是10厘米。【解析】【分析】圆锥的体积=上升的水面的体积,而上升的水面的形状是一个圆柱,故用圆柱的体积公式求出上升的水面的体积,公式为:V=πr²h。最后求出这个铅锤的高:h=V÷÷S,或h=3V÷S(S是圆锥的底面积)。12.一个圆柱形水池,在水池内壁和底部都镶上瓷砖,水池内部底面周长25.12m,池深2m,镶瓷砖的面积是多少平方米?【答案】解:底面半径:25.12÷3.14÷2=4(m),3.14×4²+25.12×2=50.24+50.24=100.48(平方米)答:镶瓷砖的面积是100.48平方米。【解析】【分析】用底面周长除以3.14再除以2求出底面半径,然后用底面积加上侧面积就是镶瓷砖的面积,侧面积=底面周长×高。13.用塑料绳捆扎一个圆柱形的蛋糕盒(如图),打结处正好是底面圆心,打结用去绳长10厘米.(1)扎这个盒子至少用去塑料绳多少厘米?(2)在它的整个侧面贴上商标和说明,这部分的面积至少多少平方厘米?【答案】(1)解:20×4+40×4+10=80+160+10=250(厘米)答:扎这个盒子至少用去塑料绳250厘米。(2)解:面积:3.14×40×20=125.6×20=2512(平方厘米)答:在它的整个侧面贴上商标和说明,这部分的面积是2512平方厘米。【解析】【分析】(1)扎这个盒子至少用去塑料绳的长度=蛋糕的直径×4+蛋糕的高×4+打结处的长度;(2)侧面贴上商标和说明这部分的面积=蛋糕的侧面积=蛋糕的底面周长×蛋糕的高,其中蛋糕的底面周长=蛋糕的底面直径×π。14.一个圆锥形沙堆,底面周长是18.84m,高是0.6m。(1)这个沙堆的占地面积是多少?(2)这个沙堆的体积是多少立方米?【答案】(1)28.26m2(2)5.652m2【解析】【解答】(1)3.14×(18.84÷3.14÷2)2=3.14×32=3.14×9=28.26(平方米)答:这个沙堆的占地面积是28.26平方米.(1)×28.26×0.6=×28.26×0.6=28.26×0.2=5.652(立方米)答:这个圆锥沙堆的体积是5.652立方米.【分析】要求这个沙堆的占地面积,就是求底面圆的面积;沙堆的形状是圆锥形的,利用圆锥的体积计算公式V=Sh.求得体积,问题得解.15.一个盛奶粉的圆柱形铁罐,底面周长是31.4厘米,高是16分米。(1)做一个这样的铁罐至少需用铁皮多少平方厘米?(接口处不计,得数保留整+平方厘米)(2)这个奶粉罐上的商标纸的面积是多少平方厘米?【答案】(1)解答:16分米=160厘米,31.4×160+3.14×(31.4÷3.14÷2)²×2=5024+157=5181(平方厘米〕答:做一个这样的铁罐至少需用铁皮5181平方厘米。(2)31.4×160=5024(平方厘米)答:这个奶粉罐上的商标纸的面积是5024平方厘米。【解析】【分析】①先依据圆的周长公式求出底面半径,进而依据圆柱的表面积=侧面积+底面积×2,即可得解;②求商标纸的面积,实际上是求圆柱的侧面积,依据圆柱的侧面积=底面周长×高,即可得解。
本文标题:圆柱与圆锥易错题目
链接地址:https://www.777doc.com/doc-7843548 .html