您好,欢迎访问三七文档
复习巩固从n个不同元素中,任取m()个元素(m个元素不可重复取)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.nm1、排列的定义:2.排列数的定义:从n个不同元素中,任取m()个元素的所有排列的个数叫做从n个元素中取出m个元素的排列数nmmnA!nAnn3.有关公式:n1)(n321.阶乘:n!1(2)排列数公式:n)mN*,(m、nm)!(nn!1)m(n1)(nnAmn1.对有约束条件的排列问题,应注意如下类型:⑴某些元素不能在或必须排列在某一位置;⑵某些元素要求连排(即必须相邻);⑶某些元素要求分离(即不能相邻);2.基本的解题方法:(1)有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优先法);特殊元素,特殊位置优先安排策略方法总结(2)某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;相邻问题捆绑处理的策略(3)某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”;不相邻问题插空处理的策略例1:一天要排语、数、英、物、体、班会六节课,要求上午的四节课中,第一节不排体育课,数学排在上午;下午两节中有一节排班会课,问共有多少种不同的排法?引申练习1、4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有()A.2880B.1152C.48D.1442、今有10幅画将要被展出,其中1幅水彩画,4幅油画,5幅国画,现将它们排成一排,要求同一品种的画必须连在一起,并且水彩画不放在两端。则不同的排列方式有种。3、一排长椅上共有10个座位,现有4人就座,恰有五个连续空位的坐法种数为。(用数字作答)57604804、某城市新建的一条道路上有12只路灯,为了节约用电而又不影响正常的照明,可以熄灭其中3只灯,但两端的灯不能熄灭,也不能熄灭相邻的两只灯。则熄灯的方法有多少种?B例2:用0-5这六个数字可以组成没有重复的(1)四位偶数有多少个?奇数?(5)十位数比个位数大的三位数?(2)能被5整除的四位数有多少?(3)能被3整除的四位数有多少?(4)能被25整除的四位数有多少?(6)能组成多少个比240135大的数?若把所组成的全部六位数从小到大排列起来,那么240135是第几个数?引申练习1、八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?3、在7名运动员中选4名运动员组成接力队,参加4x100接力赛,那么甲、乙两人都不跑中间两棒的安排方法共有多少种?4、从1~9这九个数字中取出5个不同的数进行排列,求取出的奇数必须排在奇数位置上的五位数的个数。2、八人排成一排,其中甲、乙、丙三人中,有两人相邻但这三人不同时相邻的排法有多少种?例3、从数字0,1,3,5,7中取出不同的三位数作系数,可以组成多少个不同的一元二次方程ax+bx+c=0?其中有实根的方程有多少个?2变式:若直线Ax+By+C=0的系数A、B可以从0,1,2,3,6,7这六个数字中取不同的数值,则这些方程所表示的直线条数是()A.18B.20C.12D.22A高考回眸1、(05年福建)从6人中选人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲乙不去巴黎游览,则不同的选择方案共有()种A.300B.240C.144D.962、(05年江苏)四棱锥的8条棱分别代表8种不同的化工产品,有公共点的两条棱所代表的化工产品放在同一仓库是危险的,没有公共点的两条棱所代表的化工产品放在同一仓库是安全的。现打算用编号为(1)、(2)、(3)、(4)的四个仓库存放这8种化工产品,那么安全存放的不同方法种数为()A.96B.48C.24D.0BB(09湖南高考题)从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位A85B56C49D28(09湖南高考题)某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为___[C]12
本文标题:1.2.1排列3
链接地址:https://www.777doc.com/doc-7886363 .html