您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2018-2019学年八年级数学下学期期末检测卷 (新版)北师大版
1期末检测卷时间:100分钟满分:120分一.选择题(每小题3分,共30分)1.下列各式:(1﹣x),,,+x,,其中分式有()A.2个B.3个C.4个D.5个2.平行四边形不具有的性质是()A.对角线互相平分B.两组对边分别相等C.对角线相等D.相邻两角互补3.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是()A.7cmB.9cmC.12cm或9cmD.12cm4.已知两个不等式的解集在数轴上如图表示,那么这个解集为()A.x≥﹣1B.x>1C.﹣3<x≤﹣1D.x>﹣35.下列各式从左到右的变形,是因式分解的为()A.x(a﹣b)=ax﹣bxB.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1)D.ax+bx+c=x(a+b)+c6.如图,▱ABCD的周长是22cm,△ABC的周长是17cm,则AC的长为()A.5cmB.6cmC.7cmD.8cm7.下列多项式,可以用平方差公式分解因式的是()A.a2+4B.a2﹣ab2C.﹣a2+4D.﹣a2﹣48.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AB∥CD,AD∥BCB.OA=OC,OB=ODC.AD=BC,AB∥CDD.AB=CD,AD=BC9.关于x的方程﹣=0有增根,则m的值是()A.2B.﹣2C.1D.﹣1210.已知△ABC的周长为1,连接△ABC的三边中点构成第二个三角形,再连接第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是()A.B.C.D.二.填空题(每小题3分,共30分)11.分解因式:x3y﹣2x2y2+xy3=________.12.不等式7﹣x>1的正整数解为________.13.化简的结果为________.14.如果9x2+kx+25是一个完全平方式,那么k的值是________.15.如图,在△ABC中,AD=BD,AE=EC,BC=6,则DE=________.16.一个多边形的每一个内角都是108°,则这个多边形的边数是________.17.如图,在等腰三角形ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是________.18.若分式的值为0,则x=________.19.如图,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为________.20.如图,在▱ABCD中,AE⊥BC于E,AF⊥CD于F,若AE=4,AF=6,▱ABCD的周长为40,则▱ABCD的面积为________.3三.解答题(共60分)21.(6分)解方程:.22.(6分)解不等式组,并把它的解集在数轴上表示出来.再求它的所有的非负整数解.23.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:⑴画出将△ABC向上平移3个单位长度后得到的△A1B1C1;⑵画出将△A1B1C1绕点C1按顺时针方向旋转90°后所得到的△A2B2C1.24.(6分)先化简,再求值:,其中a满足方程a2+4a+1=0.425.(8分)如图,在平行四边形ABCD中,对角线AC,BD交于O,EO⊥AC,(1)若△ABE的周长为10cm,求平行四边形ABCD的周长,(2)若∠DAB=108°,AE平分∠BAC,试求∠ACB的度数.26.(8分)如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).27.(8分)某校为了美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少.5(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?28.(10分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC边的延长线上,如图2,其他条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.6参考答案1.A【解析】中的分母含有字母是分式.故选A.2.C【解析】由分析可知,选项A、B、D均正确,但平行四边形的对角线并不相等,而矩形,正方形的对角线才相等,故C选项错误.故选C.3.D【解析】①当5cm为腰长,2cm为底边长时,此时周长为12cm;②当5cm为底边长,2cm为腰长时,则两边和小于第三边无法构成三角形,故舍去.∴其周长是12cm.故选D.4.A【解析】两个不等式的解集的公共部分是﹣1及其右边的部分.即大于等于﹣1的数组成的集合.故选A.5.C【解析】A、是整式的乘法运算,故错误;B、结果不是积的形式,故错误;C、x2﹣1=(x+1)(x﹣1),故正确;D、结果不是积的形式,故错误.故选C.6.B【解析】∵四边形ABCD是平行四边形,∴AB=DC,AD=BC.∵▱ABCD的周长是22cm,∴AB+BC=11cm.∵△ABC的周长是17cm,∴AB+BC+AC=17cm,∴AC=17﹣11=6(cm).故选B.7.C【解析】﹣a2+4=22﹣a2=(2+a)(2﹣a).故选C.8.C【解析】A、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不符合题意;B、根据对角线互相平分的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不符合题意;C、不能判定四边形ABCD是平行四边形,故此选项符合题意;D、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不符合题意.故选C.9.A【解析】方程两边都乘(x﹣1),得m﹣1﹣x=0.∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故选A.10.D【解析】∵如图,连接△ABC的三边中点构成第二个三角形,∴新三角形的三边与原三角形的三边长的比为1:2,∴它们相似,且相似比为1:2.同理可知,第三个三角形与第二个三角形的相似比为1:2,即第三个三角形与第一个三角形的相似比为:1:22.以此类推,第2010个三角形与原三角形的相似比为1:22009.∵△ABC的周长为1,∴第2010个三角形的周长为.故选D.11.xy(x﹣y)2【解析】x3y﹣2x2y2+xy3=xy(x2﹣2xy+y2)=xy(x﹣y)2.12.1,2,3,4,5【解析】不等式7﹣x>1的解集为x<6,所以正整数解为1,2,3,4,5.13.714.±30【解析】∵(3x±5)2=9x2±30x+25,∴在9x2+kx+25中,k=±30.15.3【解析】∵AD=BD,AE=EC,∴DE=BC=3.16.5【解析】180﹣108=72,多边形的边数是360÷72=5.则这个多边形是五边形.17.50°【解析】∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.18.﹣3【解析】∵分式的值为0,∴,解得x=﹣3.19.7【解析】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC===4.∵△ADE是由△CDE翻折而成的,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周长为AB+BC=3+4=7.20.48【解析】∵▱ABCD的周长为2(BC+CD)=40,∴BC+CD=20.①∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,∴S▱ABCD=4BC=6CD.整理,得BC=CD.②联立①②,解得,CD=8.∴▱ABCD的面积为AF•CD=6CD=6×8=48.21.【解】最简公分母为(x+2)(x﹣2).去分母,得(x﹣2)2﹣(x+2)(x﹣2)=16.整理,得﹣4x+8=16.解得x=﹣2.经检验,x=﹣2是增根.故原分式方程无解.22.【解】.由①,得x>﹣2.由②,得x≤.故此不等式组的解集为﹣2<x≤.在数轴上表示为.它的所有的非负整数解为0,1,2.23.【解】⑴如图,△A1B1C1为所求作的三角形.8⑵如图,△A2B2C1为所求作的三角形.24.【解】原式=====.∵a2+4a+1=0,∴a2+4a=﹣1.∴原式=.25.【解】(1)∵四边形ABCD是平行四边形,∴OA=OC.∵OE⊥AC,∴AE=CE.∴△ABE的周长为AB+AC=10.根据平行四边形的对边相等,得平行四边形ABCD的周长为2×10=20cm.(2)∵AE平分∠BAC,∴∠BAE=∠CAE,∵△ACE是等腰三角形,∴∠CAE=∠ACB.∵四边形ABCD是平行四边形,∴∠ACB=∠CAD,∴∠DAB=∠BAE+∠CAE+∠CAD=3∠CAD=108°,∴∠ACB=∠CAD=36°.26.【解】(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB.∵AE⊥BD于E,CF⊥BD于F,∴∠AEB=∠CFD=90°,9∴△ABE≌△CDF(AAS),∴BE=DF.(2)四边形MENF是平行四边形.证明如下:由(1)可知,BE=DF.∵四边形ABCD为平行四边形,∴AD∥BC,∴∠MDB=∠NBD.∵DM=BN,∴△DMF≌△BNE,∴NE=MF,∠MFD=∠NEB,∴∠MFE=∠NEF,∴MF∥NE,∴四边形MENF是平行四边形.27.【解】(1)设乙工程队每天能完成绿化的面积是x(m2).根据题意,得﹣=4,解得x=50.经检验,x=50是原方程的解,且符合题意.则甲工程队每天能完成绿化的面积是50×2=100(m2).答:甲、乙两工程队每天能完成绿化的面积分别是100m2,50m2.(2)设应安排甲队工作y天.根据题意,得0.4y+×0.25≤8,解得y≥10.答:至少应安排甲队工作10天.28.(1)【证明】∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°.又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠FAB=∠DAC.在△AFB和△ADC中,,∴△AFB≌△ADC(SAS).(2)【解】由(1),得△AFB≌△ADC,∴∠ABF=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABF=∠BAC,∴FB∥AC.又∵BC∥EF,∴四边形BCEF是平行四边形.(3)【解】成立.理由如下:10∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°.又∵∠FAB=∠BAC﹣∠FAE,∠DAC=∠FAD﹣∠FAE,∴∠FAB=∠DAC.在△AFB和△ADC中,,∴△AFB≌△ADC(SAS),∴∠AFB=∠ADC.又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,∴∠ADC=∠EAF,∴∠AFB=∠EAF,∴BF∥AE.又∵BC∥EF,∴四边形BCEF是平行四边形.
本文标题:2018-2019学年八年级数学下学期期末检测卷 (新版)北师大版
链接地址:https://www.777doc.com/doc-7935010 .html