您好,欢迎访问三七文档
13.5探索与表达规律学校:___________姓名:___________班级:___________一.选择题(共10小题)1.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.2B.C.5D.2.观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a的值为()A.75B.89C.103D.1393.农夫将苹果树种在正方形的果园内.为了保护苹果树不怕风吹,他在苹果树的周围种针叶树.在下图里,你可以看到农夫所种植苹果树的列数(n)和苹果树数量及针叶树数量的规律:当n为某一个数值时,苹果树数量会等于针叶树数量,则n为()A.6B.8C.12D.164.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2018个式子的值是()A.8068B.8069C.8070D.807125.如图,四个小朋友站成一排,老师按图中所示的规则数数,数到2018时对应的小朋友可得一朵红花,那么得红花的小朋友是()A.小沈B.小叶C.小李D.小王6.把所有正偶数从小到大排列,并按如下规律分组:第一组:2,4;第二组:6,8,10,12;第三组:14,16,18,20,22,24第四组:26,28,30,32,34,36,38,40……则现有等式Am=(i,j)表示正偶数m是第i组第j个数(从左到又数),如A10=(2,3),则A2018=()A.(31,63)B.(32,17)C.(33,16)D.(34,2)7.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110B.158C.168D.1788.将正整数按如图所示的位置顺序排列,根据排列规律,则2018应在()A.A处B.B处C.C处D.D处9.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是()3A.M=mnB.M=m(n+1)C.M=mn+1D.M=n(m+1)10.将一列有理数﹣1,2,﹣3,4,﹣5,6,……,按如图所示有序排列,根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中D的位置是有理数(),2008应排在A、B、C、D、E中的()位置.其中两个填空依次为()A.29,CB.﹣29,DC.30,BD.﹣31,E二.填空题(共5小题)11.已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,Sn=;当n为大于1的偶数时,Sn=﹣Sn﹣1﹣1),按此规律,S2018=.12.按一定顺序排列的一列数叫做数列,如数列:,,,,…,则这个数列前2018个数的和为.13.根据下列各式的规律,在横线处填空:,,=,…,+﹣=14.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是.15.将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,Sn=a1+a2+…+an,则S2018=.4三.解答题(共4小题)16.观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.17.(1)根据下列算式的规律填空:﹣=,﹣=,﹣=,﹣=,第n个算式为;(2)利用上述规律计算:++…=.518.如图,将连续的奇数1,3,5,7…按图1中的方式排成一个数表,用一个十字框框住5个数,这样框出的任意5个数(如图2)分别用a,b,c,d,x表示.(1)若x=17,则a+b+c+d=.(2)移动十字框,用x表示a+b+c+d=.(3)设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.19.观察下列等式的规律,解答下列问题:a1=(+),a2=(+),a3=(+),a4=(+),…….(1)第5个等式为;第n个等式为(用含n的代数式表示,n为正整数);(2)设S1=a1﹣a2,S2=a3﹣a4,S3=a5﹣a6,……,S1008=a2015﹣a2016.求S1+S2+S3+……+S1008的值.6参考答案一.选择题(共10小题)1.B.2.A.3.B.4.D.5.B.6.B.7.B.8.A.9.B.10.C.二.填空题(共5小题)11.﹣.12..13..14.2018.15.63.三.解答题(共4小题)16.(1)根据已知规律,第6个分式分母为6和7,分子分别为1和5故应填:(2)根据题意,第n个分式分母为n和n+1,分子分别为1和n﹣1故应填:证明:=∴等式成立17.(1)∵第1个算式为﹣==,第2个算式为﹣==,第3个算式为﹣==,7∴第4个算式为﹣==,…∴第n个算式为﹣=.故答案为,﹣=;(2)由(1)可知﹣=,∴=﹣.∴++…=(++…+)=(﹣+﹣+…+﹣)=(﹣)=.故答案为.18.观察图1,可知:a=x﹣12,b=x﹣2,c=x+2,d=x+12.(1)当x=17时,a=5,b=15,c=19,d=29,∴a+b+c+d=5+15+19+29=68.故答案为:68.(2)∵a=x﹣12,b=x﹣2,c=x+2,d=x+12,∴a+b+c+d=(x﹣12)+(x﹣2)+(x+2)+(x+12)=4x.故答案为:4x.(3)M的值不能等于2020,理由如下:令M=2020,则4x+x=2020,解得:x=404.∵404是偶数不是奇数,∴与题目x为奇数的要求矛盾,∴M不能为2020.819.(1)由题意得:a5=;∴an=(+)=;故答案为:+,;(2)由(1)可知an=,∴S1=a1﹣a2=(1+)﹣(+)=1﹣,S2=a3﹣a4=(+)﹣(+)=﹣,S3=a5﹣a6=(+)﹣(+)=﹣,………S1008=a2015﹣a2016=(+)﹣(+)=﹣,∴S1+S2+S3+…+S1008,=(1﹣)+()+(﹣)+…+(),=1﹣,=.
本文标题:2018-2019学年度七年级数学上册 3.5 探索与表达规律同步练习 (新版)北师大版
链接地址:https://www.777doc.com/doc-7936596 .html