您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 工作范文 > 三角形全等的判定教学反思
精品WORD文档下载可编缉使用三角形全等的判定教学反思篇一:《全等三角形的判定1》教案及教学反思《全等三角形的判定1》教案及教学反思教学目标1知识目标:掌握“边边边”条件的内容,并能初步应用“边边边”条件判定两个三角形全等.2能力目标:使学生经历探索三角形全等条件的过程,体会如何探索研究问题,并初步体会分类思想,提高学生分析问题和解决问题的能力.3思想目标:通过画图、比较、验证,培养学生注重观察、善于思考、不断总结的良好思维习惯。教学重点、难点:重点:利用边边边证明两个三角形全等难点:探究三角形全等的条件教学过程(一)复习提问1、什么叫全等三角形?2、全等三角形有什么性质?3、若△ABC≌△DEF,点A与点D,点B与点E是对应点,试写出其中相等的线段和角.(二)新课讲解:问题1:如图:在△ABC和△DEF中,AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F,则△ABC和△DEF全等吗?问题2:△ABC和△DEF全等是不是一定要满足精品WORD文档下载可编缉使用AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F这六个条件呢?若满足这六个条件中的一个、两个或三个条件,这两个三角形全等吗?一个条件可分为:一组边相等和一组角相等两个条件可分为:两个边相等、两个角相等、一组边一组角相等探究一:1.只给一个条件(一组对应边相等或一组对应角相等)。①只给一条边:②只给一个角:12.给出两个条件:①一边一内角:°②两内角:②两°内角°:③两边:50精品WORD文档下载可编缉使用2cm4cm2cm4cm问题3:两个三角形若满足这六个条件中的三个条件能保证它们全等吗?满足三个条件有几种情形呢?3.给出三个条件三个条件可分为:三条边相等、三个角相等、两角一边相等、两边一角相等例:画△ABC,使AB=2,AC=3,BC=42画法:1画线段BC=42分别以A、B为圆心,以2和3为半径作弧,交于点C。则△ABC即为所求的三角形把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否互相重合?归纳:有三边对应相等的两个三角形全等.可以简写成“边边边”或“SSS”用数学语言表述:在△ABC和△DEF中∴△≌△DEF(SSS)(三)题例训练:例1填空:1、在下列推理中填写需要补充的条件,使结论成立:如精品WORD文档下载可编缉使用图,在△AOB和△DOC中AO=DO(已知)______=________(已知)∴△AOB≌△DOC(SSS)2、如图,AB=CD,AC=BD,△ABC和△DCB是否全等?试说明理由。解:△ABC≌△DCB理由如下:在△ABC和△DCB中=——∴△≌()例2.ABC是一个刚架,AB=AC,AD是连接A与BC中点D的支架。求证:△ABD≌△ACDBO=CO(已知)证明:∵D是BC中点3BD=CD在△ABD和△ACD中:AB=AC(已知)AD=AD(公共边)BD=CD(已证)∴△ABD≌△ACD(SSS)证明的书写步骤:①准备条件:证全等时把要用的条件要先证好;②三角形全等书写步骤:1写出在哪两个三角形中2摆出三个条件用大括号括起来3写出全等结论例3:如图,在四边形ABCD中AB=CD,AD=BC,求证:∠A=∠C证明:在△ABD和△CDB中精品WORD文档下载可编缉使用AB=CD(已知)AD=BC(已知)BD=DB(公共边)∴△ABD≌△CDB(SSS)∴∠A=∠C(全等三角形的对应角相等)练习:1、如图,D、F是线段BC上的两点,AB=EC,AF=ED,要使△ABF≌△ECD,还需要条件2、已知:B、E、C、F在同一直线上,AB=DE,AC=DFA并且BE=CF,求证:△ABC≌△DEF小结:1、本节所讲主要内容为利用“边边边”证明两个三角形全等。2证明三角形全等的书写步骤。3证明三角形BE全等应注意的问题。作业1、教材第103页习题13、2第⑴、⑵、⑼三题2、思考题:已知如图,AC=AD,BC=BD求证:∠C=∠D4DCF精品WORD文档下载可编缉使用教学反思教学中,我将尽可能的让学生明白数学源自于生活,我们身边随处都有数学。课堂上,本着教师为引导,学生是主体的思想。而去引导学生观察,思考,讨论,动手实践等,从而得到新知。激发学生的兴趣也是教师教学中不能没有的教学理念,兴趣是学习的动力,是学习最好的导师。总之,最终的教学目标是,从教会学生数学,过渡到学生明白怎样会学数学。以上理念我在教学中我做得如何?每一节课后我都要反思想着自己的教学理念实行的程度,课堂教学效果。反思教学过程中的教学理念,学生的反应,学生获知结果。以及课后学生的情绪,应用新知的情况等。寻求学生学习成果最大化。《12.1全等三角形》这一节教学中,情景引入这一环节,我以问题先让学生联想生活实际去思考,而得到答案。而再拿出生活中易见的事物,让学生观察、体验而引入下一环节。在探索新知的过程中,由上面的环节作为铺垫,得出概念。学生的反应有点欢庆。进一步探索全等三角形的过程中,我再拿出实物课件,提出问题(看老师手中的两个三角,如何通过动,让这两个三角形重合?),学生观察,思考,可以与周围同学讨论。再让学生上黑板动手解决。学生的注意力集中,也能够轻松回答问题。全等三角形的性质学生也能够自己轻松的知道。在做教科书第三页的练习题的时候,学生也轻易的做出。整个教学过程还算顺畅。课后当自己洋洋得意时,问题出现了,学精品WORD文档下载可编缉使用生在做作业,教科书第四页习题12.1第1、2的时候,相当有一部分学生做错了。写对应边和对应角的时候,写错了。据了解,是因为这类学生不知道全等三角形重合时,不知道那两个点时重合的。那为什么课堂上,做练习的时候学生会做呢?是因为课堂上的数学题相对简单些,而作业题具有一定的抽象,学生缺少让两三角形动起来的想象能力。5篇二:全等三角形的判定(SAS)的教学反思全等三角形的判定(SAS)的教学反思我认为做得较好的地方有:一、把课堂的主动权还给学生,分层次提问问题,让每个学生都参与进来。本节课以提问的形式复习前面的判定方法,出示课件让学生先直观三角形交流形状和大小是否一样,再让学生按要求动手画三角形,交流看所画的三角形是否完全重合,最后看这两个三角形具备什么条件,归纳”SAS"定理。从方法的推导到运用都让学生充分发表自己的意见,老师根据学生的情况作适时指导,起到指导的作用。充分发挥学生的学习主动性,达到抛砖引玉的效果。二、突出重点、突破难点本节课重点是运用“边角边”方法证明两个三角形全等,所设计的例题、练习都是运用“边角边”方法进行证明,学生会用“边角边”判定方法解决实际问题。习题的设计上我采用层精品WORD文档下载可编缉使用次递进法,达到每个层次的学生都能参与,让他们多交流,同层次交流,综合交流,从而充分发挥学生的积极主动性,使课堂气氛活跃,提高学生学习的积极性,培养学生学习数学的兴趣。不足之处:一、时间把握不准。由于给充分时间学生探索、运用“边角边”判定定理,由于学生层次不齐,各个环节实用时间都比计划的时间多。二,没能做到关注每一位学生,分层次教学效果还有点差,有极个别学生没有参与课堂,课堂反馈的信息不够全面。三、板书不够合理、美观,要加强这方面的训练。篇三:三角形全等的判定(SSS)教学设计与教学反思三角形全等的判定(SSS)教学设计与教学反思一、简述全等三角形的“边边边”判定(SSS)大约需要一课时的学习时间,本课需要经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,培养学生观察分析图形能力、动手能力;熟记“边边边”定理的内容;能运用“边边边”定理证明两个三角形全等;通过对问题的共同探讨,培养学生的协作、交流能力。这节课是《全等三角形》的重要内容。二、教学目标分析1、知识与技能:精品WORD文档下载可编缉使用(1)经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,培养学生观察分析图形能力、动手能力。2、过程与方法:(1)经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力。(2)在例题处理过程中组织引导学生自主探究、分析讨论、交流解法,巩固三角形全等的证明方法.3、情感、态度与价值观(1)在探索三角形全等条件的过程中,培养学生有条理的思考能力、概括能力和语言表达能力。[学习重点和难点](1)重点:指导学生分析问题,寻找判定三角形全等的条件及应用“边边边”定理解决问题。(2)难点:三角形全等条件的探索过程。三、学习者特征分析学生对多媒体大屏幕环境下的课堂环境非常熟悉,学生具备一定的自学能力,思维活跃,对自己动手的活动兴趣很高;学生已经接触过全等三角形的很多性质,学生现在处于逻辑推理论证的初步阶段,从这章开始,学生应该逐步学会逻辑推理,这类题的推理书写对学生来说难度比较大,同时,我们知道,以前学生学习数学都是一些简单的图形,从这章开始出现了几个图形的变换或叠加,学生在解题过程中,找全等条件是一个精品WORD文档下载可编缉使用难度.四、教学策略选择与设计学习过程中,通过课件创设的情境充分调动学生各知觉器官,做到“细观察、多动手、勤思考”.通过观察、猜想、探究、推理、模仿、体验等方法完成本节知识的学习。本节课采用“问题导学,自主探索”的教学模式,采用情境探究法、谈话法等,使学生在自主探究的过程中完成学习的任务。五、教学资源与工具设计(1)准备一些形状、大小完全相同的三角形纸片(2)教师自制的多媒体课件、三角板、量角器、圆规等(3)上课环境为多媒体大屏幕环境。(4)剪刀六、教学过程(一)复习引入多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等。反之,这六个元素分别相等,这样的两个三角形一定全等。(在教师引导下回忆前面知识,为探究新知识作好准备。)提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个元素中的一部分,至少需要几个元素对应相等能保证两个三角形全等呢?(问题的提出使学生产生浓厚的兴趣,激发他们的探究欲望。引导学生先确定探究的思路和方法,进一步培养理性思维。)精品WORD文档下载可编缉使用(二)操作探究出示探究一:(课前完成)已知一个条件已知两个条件AD条件与图形结论条件与图形结论已知:△ABC与△DEFBCE条件1:AB=10cmAC=12cmBC=13cm条件2:DE=10cmDF=12cmEF=13cm让两个组学生按照条件1中所给出的条件画出三角形ABC,让另两个组学生按照条件2中所给出的条件画出三角形DEF。画完后将三角形剪下来,与周围同学比一比,看所画的两个三角形是否全等。本节课组织学生进行交流,经过学生逐步分析,各种情况逐渐明朗。得出结论:只给出一个或两个条件时,都不能保证所画出的三角形全等。(学生动手操作,通过实践、自主探索、交流获得新知,同时也渗透了分类的思想,引导学生从六个元素中选取部分元素可得到全等的三角形.)(教学中引导学生从实践入手,采取提问、猜测、探索、归纳等教学手段,使总结三角形全等的“边边边”判定.)(三)归纳总结提出问题:从上面的操作中,你发现具备什么条件的两个三角形全等?总结规律:边边边定理:三边对应相等的两个三角形全等(简记为“边边边”或“SSS”)精品WORD文档下载可编缉使用(在此处要留给学生较充分的独立思考、探究时间,在探究过程中,提高逻辑推理能力;在总结的过程中培养学生的概括能力和语言表达能力。)(规律得出后结合图形把该公理用几何符号语言表示,培养学生的符号意识)(四)尝试应用1、结合课本,请同学们观察图形,从中找出全等的三角形,并把它们用序号表示出来。2、例题讲解出示例题:见课本(先让学生独立分析已知条件、图形特征及其与结论的关系,并思考证明的方法。而后进行小组交流,方法展示,教师最后作评价与总结)(要注意规范证明过程)题后小结:当要求证相等的两条线段或两个角位于两个三角形中时,通常可借助证明它们所在的三角形全等得证。(总结提炼全等三角形的应用)2、完成教材后练习2、3题.(通过练习训练,让学生体会成功的喜悦)(五
本文标题:三角形全等的判定教学反思
链接地址:https://www.777doc.com/doc-7937247 .html