您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 工作范文 > 研究线粒体DNA表观遗传学的作用以及展望
精品WORD文档下载可编缉使用研究线粒体DNA表观遗传学的作用以及展望研究线粒体DNA表观遗传学的作用以及展望本文关键词:表观,线粒体,遗传学,展望,作用研究线粒体DNA表观遗传学的作用以及展望本文简介:关键词:线粒体;表观遗传学;交叉串话;表观遗传学能够在不改变基因序列的情况下调控基因的表达,且该变化是可遗传的,主要包括DNA甲基化、组蛋白修饰、miRNA和RNA甲基化等,在调控基因表达、个体发育、分化和衰老等方面发挥重要作用。线粒体基因组是一个环状的双链DNA分子,含有类似于组蛋白结构的研究线粒体DNA表观遗传学的作用以及展望本文内容:关键词:线粒体;表观遗传学;交叉串话;精品WORD文档下载可编缉使用表观遗传学能够在不改变基因序列的情况下调控基因的表达,且该变化是可遗传的,主要包括DNA甲基化、组蛋白修饰、miRNA和RNA甲基化等,在调控基因表达、个体发育、分化和衰老等方面发挥重要作用。线粒体基因组是一个环状的双链DNA分子,含有类似于组蛋白结构的类核,受到表观遗传学机制调控。线粒体表观遗传学(mitoepigentics)是指线粒体编码的基因发生表观遗传修饰以及其他代谢物对线粒体进行表观遗传调控而产生影响,且线粒体与核基因组存在复杂的表观遗传学调控作用网络,可参与复杂的病理生理过程,如神经退行性疾病、癌症或早衰等,其线粒体表观遗传学已然成为生命科学究领域一个崭新的重要内容。线粒体表观遗传学有4种调控方式:(1)调控核基因表达的表观遗传机制,可通过调节核编码的线粒体基因表达影响线粒体;(2)细胞特异性线粒体DNA(mtDNA)含量和线粒体活性决定核基因的甲基化模式;(3)mtDNA变异影响核基因表达模式和核DNA甲基化水平;(4)mtDNA本身也受到表观遗传学修饰[1].此外,暴露于环境污染物和膳食营养等因素也会刺激线粒体基因的表观遗传学修饰,从而影响其基因表达[2].线粒体与细胞核之间的交叉串话、利用mtDNA表观遗传产物作为生物学标志以及环境、营养膳食对线粒体表观遗传的影响是目前生命科学研究的重要内容。精品WORD文档下载可编缉使用1、mtDNA表观遗传学修饰及其作用1.1mtDNA表观遗传学修饰酶DNA甲基化通常抑制基因启动子的活性,从而影响基因的稳定性,在哺乳类动物mtDNA也存在5-甲基胞嘧啶(5mC)和5-羟甲基胞嘧啶(5hmC),其甲基化亦存在于CpG二核苷酸之外的区域。1971年在线粒体内发现含有形成5mC所必需的DNA甲基转移酶(DNMT),表明mtDNA可能含有5mC[3].随后证据表明,哺乳动物mtDNA存在5mC,而mtDNMT1是靶向线粒体序列的核编码DNMT1内源性等位基因,mtDNMT1负责mtDNA胞嘧啶的甲基化,并参与对mtDNA转录因子的表达调控[4-5].除mtDNMT1外,DNMT3A和DNMT3B也参与线粒体表观遗传学调控作用,具有氧化还原依赖性DNA的去羟甲基化能力,在特定情况下,能够将5hmC去羟甲基化[6].DNMT3A/3B旁系同源物DNMT3L能与DNMT3A/3B相互作用而促进mtDNA发生甲基化。5mC转换为5hmC需要TET酶(TET1~3)和Fe2+依赖加双氧酶的催化,TET后续催化5hmC转换成5-甲酰胞精品WORD文档下载可编缉使用嘧啶(5-fC)和5-羧基胞嘧啶(5-caC),这是2种衍生的表观遗传产物,能够在胸腺嘧啶-DNA糖基化酶和碱基切除修复途径中使5hmC还原为胞嘧啶(甲基化循环).1.2线粒体表观遗传修饰产物1.2.1mt-5mC:mtDNMT1表达以及由mtDNA编码RNAs的水平受mt-5mC的影响。mtDNMT1改变会影响mtDNA轻链和重链转录表达,并与重链上的NADH脱氢酶亚基1(ND1)转录增强及与轻链上ND6的mRNA表达降低有关,可能因为mt-5mC能对基因启动子产生抑制作用,或某种替代机制能够增强基因表达。mtDNA重链第2个启动子的转录受到线粒体转录因子A(TFAM)的抑制,而mt-5mC可能影响TFAM的转录位点和后续转录反应[7].mt-5mC在重链保守区域(CSB-Ⅲ)中的启动子区域,位于D-loop的5‘末端,在重链复制过程中影响RNA引物[8].mtDNA甲基化参与线粒体的基因表达和生物合成,但其生理作用仍未知。1.2.2mt-5hmC:精品WORD文档下载可编缉使用5hmC作为甲基化循环的中间产物,在mtDNA中高丰度分布,并且能反馈影响TETs的活性。线粒体表观遗传学参与调控衰老的不同生理病理过程,病变出现在不同月龄的小鼠脑组织中,衰老阶段的前额叶皮层中mtDNA的5hmC水平降低,mtDNA编码基因包括复合体I组分(ND2、ND4、ND4L、ND5和ND6)转录物水平仅在额叶皮层衰老过程中增加,且衰老影响mtDNMT1和TET1~3的表达;在小脑中,TET2和TET3的mRNA含量增加,但mtDNMT1的mRNA水平不受影响,提示哺乳动物大脑的线粒体表观遗传学调控受衰老影响[9].1.2.3其他表观遗传修饰类型:参与TET介导氧化途径的5-fC和5-caC,这两种表观遗传修饰产物的功能尚未阐明。通过T7RNA聚合酶(T7RNAP)或人类RNA聚合酶II的体外介导作用,发现5-fC和5-caC可导致DNA转录抑制[10].T7RNAP与线粒体聚合酶具有高度的同源性,是mtDNA表观遗传修饰产物的重要转录调控机制。目前,线粒体表观遗传修饰产物的具体生理作用仍未知,是未来重要的研究方向之一。2、线粒体表观遗传修饰产物作为生物学标志精品WORD文档下载可编缉使用线粒体特异性异常位点的表观遗传修饰可用于临床肿瘤治疗及某些相关疾病的预防策略。探索线粒体基因组5mC和5hmC的含量,与临床预后、生活方式、膳食及环境暴露之间的关系有重要意义。mtDNA甲基化产物是新一代的疾病监测生物学标志物,包括癌症,神经退行性变和年龄相关的疾病[11];mtDNA的表观遗传修饰位点包括整体和某些特异性片段基因的甲基化。目前,已经建立mtDNA甲基化与不同环境因素之间的关联,对暴露于空气污染物(如暴露于富含金属颗粒物的钢铁工人、富含苯空气的加油站服务员和交通中暴露于含碳、氮化合物的驾驶员)的工人,与低水平空气污染的对照组相比,其Phe-mtRNA和12SrRNA的编码区具有较高的甲基化水平,该编码区的去甲基化若对于职业病分子水平的预防和控制具有良好的应用前景[12].对老年男性受试者进行12S和16SrRNA编码区甲基化胞嘧啶残基的分析,发现12SrRNA甲基化水平随年龄变化,随着年龄增加而明显下降。mtDNA的CpG岛高甲基化与癌症、肌萎缩侧索硬化(ALS)、糖尿病性视网膜病变以及机体环境毒物暴露反应有关;唐氏综合征患者发现mtDNA的CpG岛呈低甲基化状态[13].mtDNA表观遗传产物作为一种新的生精品WORD文档下载可编缉使用物学标志,用于相关疾病检测。3、细胞核-线粒体表观遗传交叉串话线粒体作为一个信号传导的细胞器,细胞核通过“顺行调节”(信号从核到线粒体)促进其生物合成并调节活性。同时,线粒体也可通过“逆行反应”(信号从线粒体到细胞核)反向调控核基因的表达,经重编程而参与修饰细胞的功能。细胞内双向的信息传导称为线-核交叉串话,组成稳定而庞杂的信号网络,以维持细胞内动态平衡[14].3.1顺行调节细胞核编码大多数线粒体蛋白并输送到线粒体中执行功能,通过检测细胞代谢条件变化的多重感受器激活顺行信号通路,并根据线粒体的生物能量和生物合成输出,从而适应细胞的不同需求;该过程需激活几种核编码的转录因子和共激活因子,诱导线粒体基因表达并调节线粒体蛋白质组。由核DNA编码的聚合酶γ(Pol-γ)亚酶,即Pol-γA,负责线粒体复制和修复,通过其第二外显子内CpG岛的DNA甲基化调节表达下调;Pol-γA表达精品WORD文档下载可编缉使用与mtDNA拷贝数量成线性关系[15].在哺乳类动物中,氧化应激影响过氧化物酶体增殖物激活受体γ共激活因子1α(PGC1α)的稳定性,可激活几种核编码转录因子[包括核呼吸因子1(NRF1)]的转录。PGC1α和NRF1形成复合物能上调线粒体转录因子(TFAM)和线粒体呼吸链复合体的多个组分转录,而两者表达均受到DNA甲基化调节。胸苷激酶(TK2)在线粒体中参与脱氧核苷酸合成的补救途径,在细胞核中能促进维持细胞nDNA完整性。扩张型心肌病患者心脏中TK2基因的启动子区高甲基化而使蛋白水平降低,最终导致mtDNA耗尽[16].核编码miRNA涉及线粒体的外膜或基质,在线-核表观遗传串话中起重要作用,miRNA的存在表明基因表达核-线双向调节的复杂性。很多由核编码的miRNA在线粒体中参与调节转录和细胞代谢[17].对mtDNA转录产物分析和深度测序揭示线粒体基因组内存在编码的miRNA[18].若其与核对应物类似地调节线粒体基因表达,则具有影响核基因表达的功能。DNA发生快速或动态甲基化后与甲基-CpG结合域蛋白(MBD)进行结合发挥作用,从而对人体细胞分化、增殖和精品WORD文档下载可编缉使用分裂、正常发育、干细胞多能性、基因表达和抑制以及癌症发挥重要作用[19];线粒体也参与其中,MBD家族是否也会进入线粒体或作用于mtDNA,对线粒体的表观遗传调控机制研究具有重要意义。3.2逆行反应线粒体维持基因组DNA的稳定性,是氧化磷酸化(OXPHOS)的作用位点及众多代谢和信号通路的交叉点。线粒体的代谢反应控制着某些关键信号分子以调节核基因的表达,并可触发各种逆行信号通路,且激活许多有利于线粒体稳态恢复和促进细胞存活的反应过程。逆行反应的标志之一是能延长细胞复制和寿命[20].3.2.1组蛋白修饰:组蛋白修饰严格依赖细胞内的能量状态、线粒体功能及其中间产物的作用。组蛋白乙酰转移酶(HATs)和去乙酰化酶(HDACs)的活性依赖ATP水平和线粒体功能,ATP和乙酰CoA减少会降低NADH/NAD+还原当量,而mtDNA损伤会导致线粒体功能障碍,降低组蛋白特定位点标志物的乙酰化水平,乙酰CoA消耗可能增加DNA甲基化水平[4].线粒体三羟酸循精品WORD文档下载可编缉使用环对于组蛋白乙酰化调节非常重要。HDACs利用NAD+从底物的赖氨酸残基移去乙酰基,尽管去乙酰化酶活性对细胞内NAD+含量敏感,但缺乏线粒体控制去乙酰化酶的证据而需要进一步研究。组蛋白去甲基化酶(HDMs)包含JumonjiC(JmjC)结构域的赖氨酸去甲基化酶(JMJD),可通过2-酮戊二酸(2-OG)和Fe(Ⅱ)激活,2-OG是TCA循环产物并通过载体运输至细胞核,作为TET蛋白的底物促进5mC转换,但琥珀酸和延胡索酸作为JMJD和TET酶的竞争性抑制剂而促使DNA维持高甲基化水平,在癌症发展过程中是组蛋白和DNA的强诱导剂[21].研究显示组蛋白甲基化转移酶(HMTs)也能调节线粒体功能,如抑制赖氨酸去甲基化转移酶SETD7/9,促进线粒体生物合成并通过PGC1α和NFE2L2激活抗氧化反应[22].3.2.2mtROS:OXPHOS副产物和NADPH-氧化酶1(Nox1)产生活性氧簇(ROS)并影响表观遗传学信号。适量的毒物刺激产生mtROS,能激活Tel1p和Rad53p(哺乳动物DNA损伤反应激酶ATM和Chk2同源物),而Tel1p和Rad53p的OXPHOS,使精品WORD文档下载可编缉使用亚端粒异染色质H3K36的去甲基化酶Rph1p失活,Rir3p结合增强,导致端粒相关基因转录沉默,参与对细胞寿命的调节[23].过量ROS氧化应激损伤线粒体功能,对mtDNA产生基因毒性;并导致不可逆氧化损伤和细胞死亡;线粒体基因组邻近ROS位点,无内含子、保护性组蛋白及有限DNA修复能力,对ROS损伤尤为敏感。3.2.3线粒体解折叠蛋白反应(UPRmt):蛋白质稳态有赖于其结构的折叠与降解的平衡,UPRmt是逆行反应
本文标题:研究线粒体DNA表观遗传学的作用以及展望
链接地址:https://www.777doc.com/doc-7951394 .html