您好,欢迎访问三七文档
1.2.4诱导公式(二)课后拔高提能练一、选择题1.已知点Psinπ+θ,sin3π2-θ在第三象限,则角θ所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限解析:选Asin(π+θ)=-sinθ0,∴sinθ0,sin3π2-θ=-cosθ0,∴cosθ0,∴θ是第一象限角,故选A.2.已知cos(75°+α)=13,且-180°α-90°,则cos(15°-α)的值为()A.-223B.223C.-23D.23解析:选A∵-180°α-90°,∴-105°75°+α-15°,∴sin(75°+α)0,∴cos(15°-α)=sin[90°-(15°-α)]=sin(75°+α)=-1-cos275°+α=-223,故选A.3.已知tanθ=2,则sinπ2+θ-cosπ-θsinπ2-θ-sinπ-θ=()A.2B.-2C.0D.23解析:选B原式=cosθ+cosθcosθ-sinθ=21-tanθ=21-2=-2.故选B.4.已知cosπ6-α=23,则sinα-2π3等于()A.23B.-23C.13D.-13解析:选Bsinα-2π3=-sin2π3-α=-sinπ2+π6-α=-cosπ6-α=-23.故选B.5.在△ABC中,下列等式一定成立的是()A.sinA+B2=-cosC2B.cosA+B2=-sinC2C.sin(A+B)=sinCD.cos(A+B)=cosC解析:选C∵在△ABC内A+B+C=π,∴A+B=π-C,∴sin(A+B)=sin(π-C)=sinC,故C正确.6.化简sinπ2+αcosπ2-αcosπ+α+sinπ-αcosπ2+αsinπ+α为()A.0B.2sinαC.-2sinαD.cosα+sinα解析:选A原式=cosαsinα-cosα+sinα-sinα-sinα=-sinα+sinα=0.二、填空题7.已知θ是第四象限角,且sinθ+π4=35,则tanθ-π4=________.解析:由sinθ+π4=cosθ-π4=35,∵θ是第四象限角,∴2kπ+3π2θ2kπ+2π(k∈Z),∴2kπ+5π4θ-π42kπ+7π4(k∈Z),∴sinθ-π40,∴sinθ-π4=-45,∴tanθ-π4=-43.答案:-438.已知下列各式:①tanπ2+α=tan32π-α;②cosπ2-α=sin(π-α);③sin32π+α=cosπ2-α;④sinπ2+α=sin32π+α.其中正确的命题是________.解析:tan32π-α=tanπ+π2-α=tanπ2-α≠tanπ2+α,①不正确;cosπ2-α=sinα,sin(π-α)=sinα,∴cosπ2-α=sin(π-α),②正确;sin32π+α=-cosα,cosπ2-α=sinα,③不正确;sinπ2+α=cosα,sin32π+α=-cosα,④不正确.答案:②9.已知cosα=13,且-π2α0,则cos-α-πsin2π+αtan2π-αsin3π2-αcosπ2+α=________.解析:原式=-cosαsinα-tanα-cosα-sinα=tanα.∵cosα=13,-π2α0,∴sinα=-1-19=-223,∴tanα=-22.答案:-22三、解答题10.已知角α的终边经过点P45,-35.(1)求sinα的值;(2)求sinπ2-αsinα+π·tanα-πcos3π-α的值.解:(1)r=1625+925=1,∴sinα=-35.(2)原式=cosαtanα-sinα-cosα=1cosα=54.11.已知cosπ6-α=32,求cos5π6+α-sin2α-π6的值.解:cos5π6+α-sin2α-π6=cosπ-π6+α-1+cos2α-π6=-cosπ6-α-1+cos2α-π6=-32-1+34=-32-14.12.已知0απ2,cos(2π-α)-sin(π-α)=-55.(1)求sinα+cosα的值;(2)求2sinαcosα-sinπ2+α+11-cot3π2-α的值.解:(1)∵已知0απ2,cos(2π-α)-sin(π-α)=cosα-sinα=-55,平方可得1-2sinαcosα=15,∴2sinαcosα=45,∴(sinα+cosα)2=1+2sinαcosα=95,∴sinα+cosα=355.(2)∵cosα-sinα=-55,sinα+cosα=355,∴sinα=255,cosα=55,tanα=sinαcosα=2.∴2sinαcosα-sinπ2+α+11-cot3π2-α=2sinαcosα-cosα+11-tanα=45-55+11-2=5-95.
本文标题:2019-2020学年高中数学 第1章 基本初等函数(Ⅱ) 1.2.4 诱导公式(二)练习 新人教B
链接地址:https://www.777doc.com/doc-7975288 .html