您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 多边形的面积(教案)
第五单元多边形的面积本单元教材包括四部分内容:平行四边形的面积,三角形的面积,梯形的面积,组合图形的面积。教学目标:1、利用方格纸和割补、拼摆等方法,探索并掌握平行四边形、三角形和梯形的面积计算公式。会计算平行四边形、三角形和梯形的面积。2、使学生通过列表、画图等策略,整理平面图形的面积公式,加深对各种图形特征及其面积计算公式之间内在联系的认识。3、使学生经历操作、观察、填表、讨论、分析、归纳等数学活动过程,体会等积变形、转化等数学思想,发展空间观念,发展初步的推理能力。4、使学生在操作、思考的过程中,提高对“空间与图形”内容的学习兴趣,逐步形成积极的数学情感。教学重点:平行四边形、三角形、梯形的面积计算公式教学难点:理解三种图形面积公式的推导过程,运用公式解决面积的计算问题。课时安排:9课时教学建议:1、加强知识之间的联系,促进知识的迁移和学习能力的提高。在认识这些图形时是按照四边形和三角形分类编排,学习这些图形的面积计算则以长方形面积计算为基础,以图形内在联系为线索,以未知向已知转化为基本方法开展学习。2、体现动手操作、合作学习的学习方式,让学生经历自主探索的过程。各类图形面积公式的推导均采用让学生动手实验,先将图形转化为已经学过的图形,再通过合作学习的方式,探索转化后的图形与原来图形的联系,发现新图形的面积计算公式这样一个过程。同时按照学习的先后顺序,探索的要求逐步提高。平行四边形面积的计算,是先借助数方格的方法,得到平行四边形的面积;再引导学生将平行四边形转化为一个长方形,推导出平行四边形的面积计算公式。三角形的面积计算就直接要求学生将三角形转化为已学过的图形推导出面积计算公式。到梯形面积的计算,要求学生综合运用学过的方法自己推导出面积计算公式。每一种图形教材均没有给出推导的过程和计算公式,以便于学生从多种途径探索,自己得出结论,从而给教师和学生都留以较大的创造空间。3、注意练习的探索性,形式多样化,以促进学生对知识的理解和灵活运用。练习的编排减少了直接用公式计算的习题,安排了较多的应用问题、变式题、用间接条件求面积及画一画、分一分的操作性习题,并安排的一定数量的思考题。习题的探索性加强,例如过去直接要求量出图形底和高的长度求出面积,现在则要求学生自己想办法求出图形的面积。本单元可以用9课时进行教学。第一课时平行四边形的面积教学内容:教科书第79~81页教学目标:1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。教学重难点:探究平行四边形的面积公式是本节课的重点,通过观察拼出的长方形和原来的平行四边形发现了什么,这是教学的关键,也是学生学习的难点。教学过程:一、导入1.观察主题图(有条件的地方可做成多媒体课件出示),让学生找一找图中有哪些学过的图形。2.观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。板书课题:平行四边形的面积二、平行四边形面积计算1.用数方格的方法计算面积。(1)用多媒体或幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。(2)同桌合作完成。(3)汇报结果,可用投影展示学生填好的表格。(4)观察表格的数据,你发现了什么?通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。2.推导平行四边形面积计算公式。(1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?学生讨论,鼓励学生大胆发表意见。(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。请学生演示剪拼的过程及结果。教师用课件或教具演示剪—平移—拼的过程。(如教材第81页的图示)(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?小组讨论。可以出示讨论题:①拼出的长方形和原来的平行四边形比,面积变了没有?②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?小组汇报,教师归纳:我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。三、巩固和应用1.出示例1。读题并理解题意。学生试做,交流作法和结果。2.讨论:下面两个平行四边形的面积相等吗?为什么?板书设计:平行四边形的面积平行四边形的面积=底×高S=a×h(a=s÷h或h=s÷a)底底高高例1:6×4=24(m2)答:平行四边形的面积是24平方米。课后反思:第二课时平行四边形的面积练习课教学内容:平行四边形面积计算的练习(P82~83页练习十五第4~8题。)教学要求:1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。2.养成良好的审题习惯。教学重点:运用所学知识解答有关平行四边形面积的应用题。教具准备:展示台教学过程:一、基本练习1、平行四边形的面积是什么?它是怎样推导出来的?2、口算下面各平行四边形的面积。(1)底12米,高7米;(2)高13分米,第6分米;(3)底2.5厘米,高4厘米3、填空0.28平方米=()平方分米=()平方厘米32000平方米=()公顷0.5平方千米=()公顷二、指导练习1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?(1)生独立列式解答,集体订正。(2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?①必须知道哪两个条件?6m4m②生独立列式,集体讲评:先求这块地的面积:250×78÷10000=1.95公顷,再求共收小麦多少千克:7000×1.95=13650千克(3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?与⑵比较,从数量关系上看,什么相同?什么不同?讨论归纳后,生自己列式解答:58500÷(250×78÷1000)(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。2.(1)练习十五第5题:a、你能找出图中的两个平行四边形吗?b、他们的面积相等吗?为什么?c、生计算每个平行四边形的面积。d、你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)(2)练习十五6题让学生抓住平行四边形的底和高与正方形有什么关系。(平行四边形的底和高分别等于正方形的边长。)3.练习十五第3题:已知一个平行四边形的面积和底,求高。分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。三、课堂练习:练习十五第7题。四、作业:练习十五第4题。板书设计:平行四边形的面积练习例:(1)面积:250×78÷10000=1.95(公顷)(2)共收小麦:7000×1.95=13650(千克)答:共收小麦13650千克。(3)每公顷收小麦:58500÷(250×78÷1000)=30000(千克)答:每公顷收小麦30000千克。课后反思:第三课时三角形面积的计算教学目标:1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.2.培养学生观察能力、动手操作能力和类推迁移的能力.3.培养学生勤于思考,积极探索的学习精神.教学重点:理解三角形面积计算公式,正确计算三角形的面积.教学难点:理解三角形面积公式的推导过程.学具准备:每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。教学过程:一、激发:1.出示平行四边形1.5厘米2厘米提问:(1)这是什么图形?怎样计算平行四边形的面积。(板书:平行四边形面积=底×高)(2)底是2厘米,高是1.5厘米,求它的面积。(3)平行四边形面积的计算公式是怎样推导的?2.出示三角形。三角形按角可以分为哪几种?3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)教师:今天我们一起研究“三角形的面积”(板书)二、指导探索(一)推导三角形面积计算公式.1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?3.用两个完全一样的直角三角形拼.(1)教师参与学生拼摆,个别加以指导(2)演示课件:拼摆图形(3)讨论①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?4.用两个完全一样的锐角三角形拼.(1)组织学生利用手里的学具试拼.(指名演示)(2)演示课件:拼摆图形(突出旋转、平移)教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?5.用两个完全一样的钝角三角形来拼.(1)由学生独立完成.(2)演示课件:拼摆图形6.讨论:(1)两个完全相同的三角形都可以转化成什么图形?(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?(3)三角形面积的计算公式是什么?7、引导学生明确:①两个完全一样的三角形都可以拼成一个平行四边形。②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)③这个平行四边形的底等于三角形的底。(同时板书)④这个平行四边形的高等于三角形的高。(同时板书)⑤三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)板书:三角形面积=底×高÷2⑥如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?(二)教学例1红领巾的底是100cm,高33cm,它的面积是多少平方厘米?1.由学生独立解答.2.订正答案(教师板书)三、质疑调节(1)总结这一节课的收获,并提出自己的问题.(2)教师提问:①要求三角形面积需要知道哪两个已知条件?②求三角形面积为什么要除以2?四、反馈练习(1)计算下面每个三角形的面积.1.底是4.2米,高是2米;2.底是3分米,高是1.3分米;3.底是1.8米,高是.1.2米;(2)判断1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。()2、等底等高的两个三角形,面积一定相等。()3、两个三角形一定可以拼成一个平行四边形。()4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。()五、作业:85页做一做和练习十六第1题板书设计:三角形面积的计算平行四边形的面积=底×高每个三角形的面积等于拼成的平行四边形面积的一半。平行四边形的底等于三角形的底。平行四边形的高等于三角形的高。三角形面积=底×高÷2例2:S=ah÷2=100×33÷2=1650(cm2)答:红领巾的面积是1650平方厘米。课后反思:第四课时三角形的面积练习教学内容:三角形面积计算的练习(练习十六3~9题
本文标题:多边形的面积(教案)
链接地址:https://www.777doc.com/doc-7978192 .html