您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 七年级数学下册 第3章 整式的乘除 3.4 乘法公式作业设计 (新版)浙教版
3.4乘法公式一.选择题(共4小题)1.下列多项式相乘不能用平方差公式的是()A.(2﹣x)(x﹣2)B.(﹣3+x)(x+3)C.(2x﹣y)(2x+y)D.2.下列运算正确的是()A.(a﹣2b)(a﹣2b)=a2﹣4b2B.(﹣a+2b)(a﹣2b)=﹣a2+4b2C.(a+2b)(﹣a+2b)=a2﹣4b2D.(﹣a﹣2b)(﹣a+2b)=a2﹣4b23.若x2+2(m﹣1)x+4是一个完全平方式,则m的值为()A.2B.3C.﹣1or3D.2or﹣24.如图所示的图形面积由以下哪个公式表示()(第4题图)A.a2﹣b2=(a﹣b)(a+b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)二.填空题(共5小题)5.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形,分别计算这两个图形的阴影部分的面积,验证了公式.(第5题图)6.如图,从边长为(a+5)的正方形纸片中剪去一个边长为5的正方形,剩余部分沿虚线剪开再拼成一个长方形(不重叠无缝隙),则拼成的长方形的另一边长是.(第6题图)7.先阅读后计算:为了计算4×(5+1)×(52+1)的值,小黄把4改写成5﹣1后,连续运用平方差公式得:4×(5+1)×(52+1)=(5﹣1)×(5+1)×(52+1)=(52﹣1)×(52+1)=252﹣1=624.请借鉴小黄的方法计算:(1+)××××××,结果是.8.已知多项式x2+mx+25是完全平方式,且m<0,则m的值为.9.已知一个长方形的长和宽分别是a,b,它的周长是6,面积是2,则a2+b2=.三.解答题(共5小题)10.阅读下文件,寻找规律:已知x≠1,计算:(1﹣x)(1+x)=1﹣x2(1﹣x)(1+x+x2)=1﹣x3(1﹣x)(1+x+x2+x3)=1﹣x4(1﹣x)(1+x+x2+x3+x4)=1﹣x5…(1)观察上式猜想:(1﹣x)(1+x+x2+x3+…+xn)=.(2)根据你的猜想计算:①1+2+22+23+24+…+22018②214+215+…+2100.11.已知大正方形的周长比小正方形的周长长96厘米,它们的面积相差960平方厘米,分别求出大正方形和小正方形的边长.12.我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(第12题图)(1)写出由图2所表示的数学等式:;写出由图3所表示的数学等式:;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.13.图②是一个直角梯形.该图案可以看作由2个边长为a、b、c的直角三角形(图①)和1个腰长为c的等腰直角三角形拼成.(第13题图)(1)根据图②和梯形面积的不同计算方法,可以验证一个含a、b、c的等式,请你写出这个等式,并写出其推导过程;(2)若直角三角形的边长a、b、c满足条件:a﹣b=1,ab=4.试求出c的值.14.杨辉,字谦光,南宋时期杭州人.在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图,并说明此表引自11世纪前半叶贾宪的《释锁算术》,并绘画了“古法七乘方图”.故此,杨辉三角又被称为“贾宪三角”.杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列.在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律.结合杨辉三角并观察下列各式及其展开式:(1)根据上式各项系数的规律,求出(a+b)9的展开式.(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1.(第14题图)参考答案一.1.A2.D3.C4.A二.5.a2﹣b2=(a+b)(a﹣b)6.a+107.2﹣8.﹣109.5三.10.解:(1)由题可得,(1﹣x)(1+x+x2+x3+…+xn)=1﹣xn+1.(2)①1+2+22+23+24+…+22018.=﹣(1﹣2)(1+2+22+23+24+…+22018)=﹣(1﹣22019)=22019﹣1;②214+215+…+2100=(1+2+22+23+24+…+2100)﹣(1+2+22+23+24+…+213)=﹣(1﹣2)(1+2+22+23+24+…+2100)+(1﹣2)(1+2+22+23+24+…+213)=﹣(1﹣2101)+(1﹣214)=2101﹣214.11.解:设大小正方形的边长分别为a厘米,b厘米,根据题意,得4a﹣4b=96,a2﹣b2=(a+b)(a﹣b)=960,把a﹣b=24代入,得a+b=40,解得a=32,b=8,则大小正方形的边长分别为32厘米,8厘米.12.解:(1)由图2可得正方形的面积为(a+b+c)2=a2+b2+c2+2ab+2bc+2ac由图3可得阴影部分的面积是(a﹣b﹣c)2=a2﹣b2﹣c2﹣2bc﹣2(a﹣b﹣c)c﹣2(a﹣b﹣c)b=a2+b2+c2+2bc﹣2ab﹣2ac.即(a﹣b﹣c)2=a2+b2+c2+2bc﹣2ab﹣2ac.(2)由(1)可得a2+b2+c2=(a+b+c)2﹣(2ab+2bc+2ac)=(a+b+c)2﹣2(ab+bc+ac)=112﹣2×38=45.13.解:(1)这个等式为:a2+b2=c2.梯形的面积可表示为(a+b)(a+b)=(a+b)2,或ab×2+c2=ab+c2,∴(a+b)2=ab+c2,即a2+b2=c2.(2)由(1)中的关系式a2+b2=c2.,且c>0,得c=∵a﹣b=1,ab=4∴c==3.14.解:(1)依据规律可得到各项的系数分别为1;9;26;84;126;126;84;26;9;1.∴(a+b)9=a9+9a8b+26a7b2+84a6b3+126a5b4+126a4b5+84a3b6+26a2b7+9ab8+b9.(2)25﹣5×24+10×23﹣10×22+5×2﹣1=(2﹣1)5=1.
本文标题:七年级数学下册 第3章 整式的乘除 3.4 乘法公式作业设计 (新版)浙教版
链接地址:https://www.777doc.com/doc-8018189 .html