您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 七年级数学下册 第1章 平行线 1.4 平行线的性质作业设计 (新版)浙教版
1.4平行线的性质一.选择题(共6小题)1.如图,已知a∥b,a⊥c,∠1=40°,则∠2度数为()(第1题图)A.40°B.140°C.130°D.以上结论都不对2.如图,AB∥CD,∠1=120°,∠2=80°,则∠3的度数为()(第2题图)A.10°B.20°C.30°D.60°3.如图,直线AB∥CD,∠C=48°,∠E为直角,则∠1的度数为()(第3题图)A.136°B.130°C.132°D.138°4.如图,已知AB∥CD,∠BEG=58°,∠G=30°,则∠HFG的度数为()(第4题图)A.28°B.29°C.30°D.32°5.如图,AB∥CD,∠P=90°,设∠A=α、∠E=β、∠D=γ,则α、β、γ满足的关系是()(第5题图)A.β+γ﹣α=90°B.α+β+γ=90°C.α+β﹣γ=90°D.α+β+γ=180°6.如图,已知AB∥EF,∠C=90°,∠B,∠D,∠E三个角的大小分别是x,y,z则x,y,z之间满足的关系式是()(第6题图)A.x+z=yB.x+y+═180°C.x+y﹣z=90°D.y+z﹣x=180°二.填空题(共2小题)7.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=.(第7题图)8.如图,已知AB∥CD,∠EAF=∠BAF,∠ECF=∠DCF,记∠AEC=m∠AFC,则m=.(第8题图)三.解答题(共6小题)9.(1)如图(a),如果∠B+∠E+∠D=360°,那么AB、CD有怎样的关系?为什么?(第9题图)解:过点E作EF∥AB①,如图(b),则∠ABE+∠BEF=180°,()因为∠ABE+∠BED+∠EDC=360°()所以∠FED+∠EDC=°(等式的性质)所以FE∥CD②()由①、②得AB∥CD().(2)如图(c),当∠1、∠2、∠3满足条件时,有AB∥CD.(3)如图(d),当∠B、∠E、∠F、∠D满足条件时,有AB∥CD.10.如图所示,已知AB∥CD,分别探究下面图形中∠APC,∠PAB,∠PCD的关系,请你从四个图形中任选一个,说明你所探究的结论的正确性.①结论:(1);(2);(3);(4);②选择结论,说明理由.(第10题图)11.(1)如图AB∥CD,试判断∠BEF、∠EFG、∠FGD之间的关系.并说明理由.(2)如图AB∥CD,∠AEF=150°,∠DGF=60°.试判断EF和GF的位置关系,并说明理由.(第11题图)12.如图:已知AB∥DE,若∠ABC=60°,∠CDE=140°,求∠BCD的度数.(第12题图)13.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(第13题图)(1)说明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC会满足怎样的关系,证明你的结论.(3)若将折线继续折下去,折三次,折四次…折n次,又会得到怎样的结论?请写出你的结论.14.如图①,已知AB∥CD,点E、F分别是AB、CD上的点,点P是两平行线之间的一点,设∠AEP=α,∠PFC=β,在图①中,过点E作射线EH交CD于点N,作射线FI,延长PF到G,使得PE、FG分别平分∠AEH、∠DFl,得到图②.(1)在图①中,过点P作PM∥AB,当α=20°,β=50°时,∠EPM=度,∠EPF=度;(2)在(1)的条件下,求图②中∠END与∠CFI的度数;(3)在图②中,当FI∥EH时,请直接写出α与β的数量关系.(第14题图)参考答案一.1.C2.B3.D4.A5.B6.C二.7.80°8.三.9.解:(1)过点E作EF∥AB,如图(b),则∠ABE+∠BEF=180°,(两直线平行,同旁内角互补)因为∠ABE+∠BED+∠EDC=360°,(已知)所以∠FED+∠EDC=180°,(等式的性质)所以FE∥CD,(同旁内角互补,两直线平行)∴AB∥CD(或平行线的传递性).(2)如答图(c),当∠1、∠2、∠3满足条件∠1+∠3=∠2时,有AB∥CD.理由:过点E作EF∥AB.∴∠1=∠BEF;∵∠1+∠3=∠2,∠2=∠BEF+∠DEF,∴∠3=∠DEF,∴EF∥CD,∴AB∥CD(平行线的传递性);(第9题答图)(3)如答图(d),当∠B、∠E、∠F、∠D满足条件∠B+∠E+∠F+∠D=540°时,有AB∥CD.理由:过点E、F分别作GE∥HF∥CD.则∠GEF+∠EFH=180°,∠HFD+∠CDF=180°,∴∠GEF+∠EFD+∠FDC=360°;又∵∠B+∠E+∠F+∠D=540°,∴∠ABE+∠BEG=180°,∴AB∥GE,∴AB∥CD;故答案是:(1)两直线平行,同旁内角互补、已知、180、同旁内角互补,两直线平行或平行线的传递性;(2)∠1+∠3=∠2;(3)∠B+∠E+∠F+∠D=540°.10.解:①(1)过点P作PE∥AB,则AB∥PE∥CD,∴∠1+∠PAB=180°,∠2+∠PCD=180°,∴∠APC+∠PAB+∠PCD=360°;(2)过点P作直线l∥AB,∵AB∥CD,∴AB∥PE∥CD,∴∠PAB=∠3,∠PCD=∠4,∴∠APC=∠PAB+∠PCD;(3)∵AB∥CD,∴∠PEB=∠PCD,∵∠PEB是△APE的外角,∴∠PEB=∠PAB+∠APC,∴∠PCD=∠APC+∠PAB;(4)∵AB∥CD,∴∠PAB=∠PFD,∵∠PFD是△CPF的外角,∴∠PCD+∠APC=∠PFD,∴∠PAB=∠APC+∠PCD.②选择结论(1),证明同上.(第10题答图)11.(1)解:∠EFG=∠FGD+∠BEF证明:过点F作AB的平行线FH∵AB∥CD,AB∥FH∴CD∥FH(平行于同一条直线的两条直线互相平行)∵AB∥FH(已作)∴∠BEF=∠EFH(两直线平行,内错角相等)∵CD∥FH(已证)∴∠FGD=∠HFG(两直线平行,内错角相等∴∠BEF+∠FGD=∠EFH+∠HFG(等量代换)即:∠BEF+∠FGD=∠EFG∴∠EFG=∠FGD+∠BEF(2)EF⊥FG证明:过点F作AB的平行线FH∵AB∥CD,AB∥FH∴CD∥FH(平行于同一条直线的两条直线互相平行)∵∠AEF+∠BEF=180°(平角的定义)∴∠BEF=180°﹣∠AEF=180°﹣150°=30°∵AB∥FH(已作)∴∠BEF=∠EFH(两直线平行,内错角相等)∵CD∥FH(已证)∴∠FGD=∠HFG(两直线平行,内错角相等)∴∠BE+∠FGD=∠EFH+∠HFG(等量代换)即:∠BEF+∠FGD=∠EFG∴∠EFG=∠FGD+∠BEF=60°+30°=90°∴EF⊥FG(垂直的定义)(第11题答图)12.解:如答图,反向延长DE交BC于点M.∵AB∥DE,∴∠BMD=∠ABC=60°,∴∠CMD=180°﹣∠BMD=120°;又∵∠CDE=∠CMD+∠C,∴∠BCD=∠CDE﹣∠CMD=140°﹣120°=20°.(第12题答图)13.(1)证明:过点O作OM∥AB,∵AB∥CD,∴AB∥OM∥CD,∴∠BEO=∠MOE,∠DFO=∠MOF,∴∠BEO+∠DFO=∠EOM+∠FOM,即∠EOF=∠BEO+∠DFO.(第13题答图)(2)∠BEO、∠O、∠P、∠PFC会满足的关系式是∠BEO+∠P=∠O+∠PFC,解:过点O作OM∥AB,PN∥AB,∵AB∥CD,∴AB∥OM∥PN∥CD,∴∠BEO=∠EOM,∠PFC=∠NPF,∠MOP=∠NPO,∴∠EOP﹣∠OPF=(∠EOM+∠MOP)﹣(∠OPN+∠NPF)=∠EOM﹣∠NPF,∠BEO﹣∠PFC=∠EOM﹣∠NPF,∴∠BEO﹣∠PFC=∠EOP﹣∠OPF,∴∠BEO+∠OPF=∠EOP+∠PFC.(3)解:令折点是1,2,3,4,…,n,则∠BEO+∠2+∠4+…=∠1+∠3+∠5+…+∠PFC.14.解:(1)∵PM∥AB,α=20°,∴∠EPM=∠AEP=20°,∵AB∥CD,PM∥AB,∴PM∥CD,∴∠MPF=∠CFP=50°,∴∠EPF=20°+50°=70°.(2)∵PE平分∠AEH,∴∠AEH=2α=40°,∵AD∥BC,∴∠END=∠AEH=40°,又∵FG平分∠DFI,∴∠IFG=∠DFG=β=50°,∴∠CFI=180°﹣2β=80°;(3)由(2)可得,∠CFI=180°﹣2β.∵AB∥CD,∴∠AEN=∠END=2α,∴∠DNH=180°﹣2α,∴当FI∥EH时,∠HND+∠CFI=180°,即180°﹣2α+180°﹣2β=180°,∴α+β=90°.(第14题答图)
本文标题:七年级数学下册 第1章 平行线 1.4 平行线的性质作业设计 (新版)浙教版
链接地址:https://www.777doc.com/doc-8018244 .html