您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 数据通信与网络 > 搜索引擎技术之概要参考
前言近些天在学校静心复习功课与梳理思路(找工作的事情暂缓),趁闲暇之际,常看有关搜索引擎相关技术类的文章,接触到不少此前未曾触碰到的诸多概念与技术,如爬虫,网页抓取,分词,索引,查询,排序等等,更惊叹于每一幅精彩的架构图,特此,便有记录下来的冲动,以作备忘。本文从最基本的搜索引擎的概念谈起,到全文检索的概念,再到网络蜘蛛,分词技术,系统架构,排序的讲解,而后到图片搜索的原理,结合google搜索引擎谈其技术原理,最终以几个开源搜索引擎软件的介绍结束全文。由于本文初次接触此类有关搜索引擎的技术,参考了互联网上诸多牛人的文章与作品,有不妥之处,还望诸君海涵。再者因本人见识浅薄,才疏学浅,有任何问题或错误,欢迎不吝指正。同时,正式进军搜索引擎领域的学习与研究。谢谢。1、什么是搜索引擎搜索引擎指自动从因特网搜集信息,经过一定整理以后,提供给用户进行查询的系统。因特网上的信息浩瀚万千,而且毫无秩序,所有的信息像汪洋上的一个个小岛,网页链接是这些小岛之间纵横交错的桥梁,而搜索引擎,则为用户绘制一幅一目了然的信息地图,供用户随时查阅。搜索引擎的工作原理以最简单的语言描述,即是:搜集信息:首先通过一个称为网络蜘蛛的机器人程序来追踪互联网上每一个网页的超链接,由于互联网上每一个网页都不是单独存在的(必存在到其它网页的链接),然后这个机器人程序便由原始网页链接到其它网页,一链十,十链百,至此,网络蜘蛛便爬满了绝大多数网页。整理信息:搜索引擎整理信息的过程称为“创建索引”。搜索引擎不仅要保存搜集起来的信息,还要将它们按照一定的规则进行编排。这样,搜索引擎根本不用重新翻查它所有保存的信息而迅速找到所要的资料。接受查询:用户向搜索引擎发出查询,搜索引擎接受查询并向用户返回资料。搜索引擎每时每刻都要接到来自大量用户的几乎是同时发出的查询,它按照每个用户的要求检查自己的索引,在极短时间内找到用户需要的资料,并返回给用户。整理信息及接受查询的过程,大量应用了文本信息检索技术,并根据网络超文本的特点,引入了更多的信息。接下来,下文便由网络蜘蛛,分词技术,到系统架构,排序一一介绍。2、网络蜘蛛网络蜘蛛即WebSpider,是一个很形象的名字。把互联网比喻成一个蜘蛛网,那么Spider就是在网上爬来爬去的蜘蛛。网络蜘蛛是通过网页的链接地址来寻找网页,从网站某一个页面(通常是首页)开始,读取网页的内容,找到在网页中的其它链接地址,然后通过这些链接地址寻找下一个网页,这样一直循环下去,直到把这个网站所有的网页都抓取完为止。如果把整个互联网当成一个网站,那么网络蜘蛛就可以用这个原理把互联网上所有的网页都抓取下来。在抓取网页的时候,网络蜘蛛一般有两种策略:广度优先和深度优先(如下图所示)。广度优先是指网络蜘蛛会先抓取起始网页中链接的所有网页,然后再选择其中的一个链接网页,继续抓取在此网页中链接的所有网页。这是最常用的方式,因为这个方法可以让网络蜘蛛并行处理,提高其抓取速度。深度优先是指网络蜘蛛会从起始页开始,一个链接一个链接跟踪下去,处理完这条线路之后再转入下一个起始页,继续跟踪链接。这个方法有个优点是网络蜘蛛在设计的时候比较容易。至于两种策略的区别,下图的说明会更加明确。由于不可能抓取所有的网页,有些网络蜘蛛对一些不太重要的网站,设置了访问的层数。例如,在上图中,A为起始网页,属于0层,B、C、D、E、F属于第1层,G、H属于第2层,I属于第3层。如果网络蜘蛛设置的访问层数为2的话,网页I是不会被访问到的。这也让有些网站上一部分网页能够在搜索引擎上搜索到,另外一部分不能被搜索到。对于网站设计者来说,扁平化的网站结构设计有助于搜索引擎抓取其更多的网页。3、中文分词下图是我无聊之际,在百度,谷歌,有道,搜狗,搜搜,雅虎中搜索:结构之法的搜索结果比较(读者可以永久在百度或谷歌中搜索:结构之法4个字,即可进入本博客):从上图可以看出,百度,谷歌,搜狗,搜搜,雅虎都在第一个选项链接到了本博客--结构之法算法之道,但有道的搜索结果则差强人意。是什么影响了这些搜索引擎搜索的质量与相关性的程度呢?答曰:中文分词。下面,咱们来具体了解什么是中文分词技术。中文分词技术属于自然语言处理技术范畴,对于一句话,人可以通过自己的知识来明白哪些是词,哪些不是词,但如何让计算机也能理解?其处理过程就是分词算法。现有的分词算法可分为三大类:基于字符串匹配的分词方法、基于理解的分词方法和基于统计的分词方法。1、基于字符串匹配的分词方法这种方法又叫做机械分词方法,它是按照一定的策略将待分析的汉字串与一个“充分大的”机器词典中的词条进行配,若在词典中找到某个字符串,则匹配成功(识别出一个词)。按照扫描方向的不同,串匹配分词方法可以分为正向匹配和逆向匹配;按照不同长度优先匹配的情况,可以分为最大(最长)匹配和最小(最短)匹配;按照是否与词性标注过程相结合,又可以分为单纯分词方法和分词与标注相结合的一体化方法。常用的几种机械分词方法如下:1)正向最大匹配法(由左到右的方向);2)逆向最大匹配法(由右到左的方向);3)最少切分(使每一句中切出的词数最小)。还可以将上述各种方法相互组合,例如,可以将正向最大匹配方法和逆向最大匹配方法结合起来构成双向匹配法。由于汉语单字成词的特点,正向最小匹配和逆向最小匹配一般很少使用。一般说来,逆向匹配的切分精度略高于正向匹配,遇到的歧义现象也较少。统计结果表明,单纯使用正向最大匹配的错误率为1/169,单纯使用逆向最大匹配的错误率为1/245。但这种精度还远远不能满足实际的需要。实际使用的分词系统,都是把机械分词作为一种初分手段,还需通过利用各种其它的语言信息来进一步提高切分的准确率。一种方法是改进扫描方式,称为特征扫描或标志切分,优先在待分析字符串中识别和切分出一些带有明显特征的词,以这些词作为断点,可将原字符串分为较小的串再来进机械分词,从而减少匹配的错误率。另一种方法是将分词和词类标注结合起来,利用丰富的词类信息对分词决策提供帮助,并且在标注过程中又反过来对分词结果进行检验、调整,从而极大地提高切分的准确率。2、基于理解的分词方法这种分词方法是通过让计算机模拟人对句子的理解,达到识别词的效果。其基本思想就是在分词的同时进行句法、语义分析,利用句法信息和语义信息来处理歧义现象。它通常包括三个部分:分词子系统、句法语义子系统、总控部分。在总控部分的协调下,分词子系统可以获得有关词、句子等的句法和语义信息来对分词歧义进行判断,即它模拟了人对句子的理解过程。这种分词方法需要使用大量的语言知识和信息。由于汉语语言知识的笼统、复杂性,难以将各种语言信息组织成机器可直接读取的形式,因此目前基于理解的分词系统还处在试验阶段。3、基于统计的分词方法从形式上看,词是稳定的字的组合,因此在上下文中,相邻的字同时出现的次数越多,就越有可能构成一个词。因此字与字相邻共现的频率或概率能够较好的反映成词的可信度。可以对语料中相邻共现的各个字的组合的频度进行统计,计算它们的互现信息。定义两个字的互现信息,计算两个汉字X、Y的相邻共现概率。互现信息体现了汉字之间结合关系的紧密程度。当紧密程度高于某一个阈值时,便可认为此字组可能构成了一个词。这种方法只需对语料中的字组频度进行统计,不需要切分词典,因而又叫做无词典分词法或统计取词方法。但这种方法也有一定的局限性,会经常抽出一些共现频度高、但并不是词的常用字组,例如“这一”、“之一”、“有的”、“我的”、“许多的”等,并且对常用词的识别精度差,时空开销大。实际应用的统计分词系统都要使用一部基本的分词词典(常用词词典)进行串匹配分词,同时使用统计方法识别一些新的词,即将串频统计和串匹配结合起来,既发挥匹配分词切分速度快、效率高的特点,又利用了无词典分词结合上下文识别生词、自动消除歧义的优点。到底哪种分词算法的准确度更高,目前并无定论。对于任何一个成熟的分词系统来说,不可能单独依靠某一种算法来实现,都需要综合不同的算法。个人了解,海量科技的分词算法就采用“复方分词法”,所谓复方,相当于用中药中的复方概念,即用不同的药才综合起来去医治疾病,同样,对于中文词的识别,需要多种算法来处理不同的问题。4、系统架构全文检索全文检索的方法主要分为按字检索和按词检索两种。按字检索是指对于文章中的每一个字都建立索引,检索时将词分解为字的组合。对于各种不同的语言而言,字有不同的含义,比如英文中字与词实际上是合一的,而中文中字与词有很大分别。按词检索指对文章中的词,即语义单位建立索引,检索时按词检索,并且可以处理同义项等。英文等西方文字由于按照空白切分词,因此实现上与按字处理类似,添加同义处理也很容易。中文等东方文字则需要切分字词,以达到按词索引的目的,关于这方面的问题,是当前全文检索技术尤其是中文全文检索技术中的难点,在此不做详述。全文检索系统是按照全文检索理论建立起来的用于提供全文检索服务的软件系统。一般来说,全文检索需要具备建立索引和提供查询的基本功能,此外现代的全文检索系统还需要具有方便的用户接口、面向的开发接口、二次应用开发接口等等。功能上,全文检索系统核心具有建立索引、处理查询返回结果集、增加索引、优化索引结构等等功能,外围则由各种不同应用具有的功能组成。结构上,全文检索系统核心具有索引引擎、查询引擎、文本分析引擎、对外接口等等,加上各种外围应用系统等等共同构成了全文检索系统。图1.1展示了上述全文检索系统的结构与功能。在上图中,我们看到:全文检索系统中最为关键的部分是全文检索引擎,各种应用程序都需要建立在这个引擎之上。一个全文检索应用的优异程度,根本上由全文检索引擎来决定。因此提升全文检索引擎的效率即是我们提升全文检索应用的根本。搜索引擎与全文检索的区别搜索引擎的门槛到底有多高?搜索引擎的门槛主要是技术门槛,包括网页数据的快速采集、海量数据的索引和存储、搜索结果的相关性排序、搜索效率的毫秒级要求、分布式处理和负载均衡、自然语言的理解技术等等,这些都是搜索引擎的门槛。对于一个复杂的系统来说,各方面的技术固然重要,但整个系统的架构设计也同样不可忽视,搜索引擎也不例外。搜索引擎的技术基础是全文检索技术,从20世纪60年代,国外对全文检索技术就开始有研究。全文检索通常指文本全文检索,包括信息的存储、组织、表现、查询、存取等各个方面,其核心为文本信息的索引和检索,一般用于企事业单位。随着互联网信息的发展,搜索引擎在全文检索技术上逐渐发展起来,并得到广泛的应用,但搜索引擎还是不同于全文检索。搜索引擎和常规意义上的全文检索主要区别有以下几点:1、数据量传统全文检索系统面向的是企业本身的数据或者和企业相关的数据,一般索引库规模多在GB级,数据量大的也只有几百万条;但互联网网页搜索需要处理几十亿的网页,搜索引擎的策略都是采用服务器群集和分布式计算技术。2、内容相关性信息太多,查准和排序就特别重要,Google等搜索引擎采用网页链接分析技术,根据互联网上网页被链接次数作为重要性评判的依据;但全文检索的数据源中相互链接的程度并不高,不能作为判别重要性的依据,只能基于内容的相关性排序。3、安全性互联网搜索引擎的数据来源都是互联网上公开的信息,而且除了文本正文以外,其它信息都不太重要;但企业全文检索的数据源都是企业内部的信息,有等级、权限等限制,对查询方式也有更严格的要求,因此其数据一般会安全和集中地存放在数据仓库中以保证数据安全和管理的要求。4、个性化和智能化搜索引擎面向的是互联网访问者,由于其数据量和客户数量的限制,自然语言处理技术、知识检索、知识挖掘等计算密集的智能计算技术很难应用,这也是目前搜索引擎技术努力的方向;而全文检索数据量小,检索需求明确,客户量少,在智能化和个性可走得更远。搜索引擎的系统架构这里主要针对全文检索搜索引擎的系统架构进行说明,下文中提到的搜索引擎如果没有特殊说明也是指全文检索搜索引擎。搜索引擎的实现原理,可以看作四步:从互联网上抓取网页→建立索引数据库→在索引数据库中搜索→对搜索结果进行处理和排序。1、从互联网上抓取网页利用能够从互联网上自动
本文标题:搜索引擎技术之概要参考
链接地址:https://www.777doc.com/doc-8022271 .html