您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 山西省大同市矿区恒安第一中学校2018-2019学年九年级数学上学期9月月考试题
山西省大同市矿区恒安第一中学校2018-2019学年九年级数学上学期9月月考试题(时间:120分钟满分:120分)一、选择题:(每小题3分,共30分)。1.下列四张扑克牌图案,属于中心对称的是()2.一元二次方程x2-x=0的根是()A.x=1B.x=0C.x1=0,x2=1D.x1=0,x2=-13.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根4.关于x的一元二次方程x2-3x+m=0有两个不相等的实数根,则实数m的值范围为()A.m≥94B.m<94C.m=94D.m<-945.方程x2+4x+1=0的解是()A.x1=2+3,x2=2-3B.x1=2+3,x2=-2+3C.x1=-2+3,x2=-2-3D.x1=-2-3,x2=2+36.已知二次函数y=-(x+k)2+h,当x>-2时,y随x的增大而减小,则函数中k的取值范围是()A.k≥-2B.k≤-2C.k≥2D.k≤27.某种电脑病毒传播的非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,若病毒得不到有效控制,三轮感染后,被感染的电脑有()台.A.81B.648C.700D.7298.抛物线的顶点坐标为(-2,3),开口方向和大小与抛物线y=x2相同,则其解析式为()A.y=(x-2)2+3B.y=(x+2)2-3C.y=(x+2)2+3D.y=-(x+2)2+39.在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是()10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论①a+b+c<0②a﹣b+c<0③b+2a<0④abc>0(5)b2<4ac,其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.一元二次方程x2-6x+c=0有一个根是2,则另一个根是.12.已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标分别是(-3,0),(2,0),则方程ax2+bx+c=0(a≠0)的解是.13、某次聚会上,每两人都握了一次手,所有人共握手36次,参加这次聚会的有人.14.已知二次函数y=x2+bx+c的图象过点A(1,m),B(3,m),若点M(-2,y1),N(-1,y2),K(8,y3)也在二次函数y=x2+bx+c的图象上,将y1,y2,y3按从小到大的顺序用“<”连接,结果是.15.若且,则一元二次方程必有一个定根,它是_______.16.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3).D是抛物线26yxx上一点,且在x轴上方.则△BCD的最大值为.三、解答题:17.(16分)用适当方法解下列方程:(1)x2+4x+4=9(2)3x(2x+1)=4x+2.(3)3(x﹣1)2=x(x﹣1)(4)3x2-6x-2=0.18、已知关于x的方程x2-(m+2)x+(2m-1)=0。(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。19.小明跳起投篮,球出手时离地面209m,球出手后在空中沿抛物线路径运动,并在距出手点水平距离4m处达到最高4m.已知篮筐中心距地面3m,与球出手时的水平距离为8m,建立如图所示的平面直角坐标系.(1)求此抛物线对应的函数关系式;(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?20、人民商场销售某种商品,统计发现:每件盈利45元时,平均每天可销售30件.经调查发现,该商品每降价1元,商场平均每天可多售出2件.(1)假如现在库存量太大,部门经理想尽快减少库存,又想销售该商品日盈利达到1750元,请你帮忙思考,该降价多少?(2)假如部门经理想销售该商品的日盈利达到最大,请你帮忙思考,又该如何降价?21、如图,在平面直角坐标系中A.B坐标分别为(2,0),(-1,3),若△OAC与△OAB全等,(1)试尽可能多的写出点C的坐标;(2)在⑴的结果中请找出与(1,0)成中心对称的两个点。22、问题情境在综合实践课上,老师让同学们在正方形中进行图形变换探究活动,已知四边形ABCD是正方形,点P是对角线BD上的一个动点。操作发现:(1)如图(1),将射线PA绕点P逆时针旋转90°,交BC于点E,则线段AP和PE之间的数量关系是(2)如图(2),在(1)的基础上,兴趣小组的同学们将△ABE沿射线BC平移到△DCF的位置,连接PF,发现PF⊥BP,请你证明这个结论。23、如图,抛物线经过A(-1,0),B(5,0),C(0,-52)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.
本文标题:山西省大同市矿区恒安第一中学校2018-2019学年九年级数学上学期9月月考试题
链接地址:https://www.777doc.com/doc-8047657 .html