您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 沪科版数学中考总复习
12012年中考沪科版初中数学总复习第1课时实数的有关概念【知识梳理】1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应.3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a的相反数是-a,0的相反数是0.5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.6.科学记数法:把一个数写成a×10n的形式(其中1≤a10,n是整数),这种记数法叫做科学记数法.如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小.8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.【思想方法】数形结合,分类讨论【例题精讲】例1.实数ab,在数轴上对应点的位置如图所示,则必有()A.0abB.0abC.0abD.0ab例2.(改编题)有一个运算程序,可以使:a⊕b=n(n为常数)时,得(a+1)⊕b=n+2,a⊕(b+1)=n-3现在已知1⊕1=4,那么2009⊕2009=.3.下列各式中,正确的是()A.3152B.4153C.5154D.1615144.已知实数a在数轴上的位置如图所示,则化简2|1|aa的结果为()A.1B.1C.12aD.21a110a第4题图0a110b例1图2第2课时实数的运算【知识梳理】1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.2.有理数减法法则:减去一个数,等于加上这个数的相反数.3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.6.有理数的运算律:加法交换律:a+b=b+a(ab、为任意有理数)加法结合律:(a+b)+c=a+(b+c)(a,b,c为任意有理数)【思想方法】数形结合,分类讨论例1.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是()A.伦敦时间2006年6月17日凌晨1时.B.纽约时间2006年6月17日晚上22时.C.多伦多时间2006年6月16日晚上20时.D.汉城时间2006年6月17日上午8时.例2.下列运算正确的是()A.523B.623C.13)13(2D.353522例3.下列运算正确的是()A.a4×a2=a6B.22532ababC.325()aaD.2336(3)9abab3.估计68的立方根的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间北京汉城890伦敦-4多伦多纽约国际标准时间(时)-5例2图3第3课时整式与分解因式【知识梳理】1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即nmnmaaa(m、n为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nmnmaaa(a≠0,m、n为正整数,mn);③幂的乘方法则:幂的乘方,底数不变,指数相乘,即nnnbaab)((n为正整数);④零指数:10a(a≠0);⑤负整数指数:nnaa1(a≠0,n为正整数);2.整式的乘除法:(1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除.(2)单项式乘以多项式,用单项式乘以多项式的每一个项.(3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项.(4)多项式除以单项式,将多项式的每一项分别除以这个单项式.(5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((bababa;(6)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(bababa3.分解因式:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:公式22()()ababab;2222()aabbab5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.6.分解因式时常见的思维误区:⑴提公因式时,其公团式应找字母指数最低的,而不是以首项为准.⑵提取公因式时,若有一项被全部提出,括号内的项“1”易漏掉.(3)分解不彻底,如保留中括号形式,还能继续分解等【例题精讲】例1下列计算正确的是()A.a+2a=3a2B.3a-2a=aC.a2a3=a6D.6a2÷2a2=3a2例2若2320aa,则2526aa.例3.下列因式分解错误的是()A.22()()xyxyxyB.2269(3)xxxC.2()xxyxxyD.222()xyxy例4.分解因式:39aa,_____________223xxx例5..对于任意两个实数对(a,b)和(c,d),规定:当且仅当a=c且b=d时,(a,b)=(c,d).定义运算“”:(a,b)(c,d)=(ac-bd,ad+bc).若(1,2)(p,q)=(5,0),则p=,q=.例6.已知a=1.6109,b=4103,则a22b=()A.2107B.41014C.3.2105D.3.21014.例7.先化简,再求值:22()()(2)3abababa,其中2332ab,.4第4课时分式与分式方程【知识梳理】1.分式概念:若A、B表示两个整式,且B中含有字母,则代数式BA叫做分式.2.分式的基本性质:(1)基本性质:(2)约分:(3)通分:3.分式运算4.分式方程的意义,会把分式方程转化为一元一次方程.5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根.【例题精讲】1.化简:2222111xxxxxx2.先化简,再求值:22224242xxxxxx,其中22x.3.解下列方程(1)013522xxxx(2)41622222xxxxx4.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x千米,则根据题意所列方程正确的是()A.B.C.D.5第5课时二次根式【知识梳理】1.二次根式:(1)定义:一般形如√ā(a≥0)的代数式叫做二次根式。叫做二次根式.2.二次根式的化简:3.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽的因数或因式.(2)根号内不含分母(3)分母上没有根号4.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.5.二次根式的乘法、除法公式:(1)ab=aba0b0(,)(2)aa=a0b0bb(,)6..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式.【例1】要使式子1xx有意义,x的取值范围是()A.1xB.0xC.10xx且D.10xx≥-且【例2】估计132202的运算结果应在().A.6到7之间B.7到8之间C.8到9之间D.9到10之间【例3】若实数xy,满足22(3)0xy,则xy的值是.【例4】如图,A,B,C,D四张卡片上分别写有523π7,,,四个实数,从中任取两张卡片.ABCD(1)请列举出所有可能的结果(用字母A,B,C,D表示);(2)求取到的两个数都是无理数的概率.6第6课时一元一次方程及二元一次方程(组)【知识梳理】1.方程、一元一次方程、二元一次方程(组)和方程(组)的解、解方程(组)的概念及解法,利用方程解决生活中的实际问题.2.等式的基本性质及用等式的性质解方程:等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件.3.灵活运用代入法、加减法解二元一次方程组.4.用方程解决实际问题:关键是找到“等量关系”,在寻找等量关系时有时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义.【例题精讲】例1.(1)解方程.xx21152156(2)解二元一次方程组27271523yxyx例2.已知x2是关于x的方程()xmxm284的解,求m的值.例3.下列方程组中,是二元一次方程组的是()A.B.C.D.例4.在中,用x的代数式表示y,则y=______________.例5.已知a、b、c满足02052cbacba,则a:b:c=.例6.某电厂规定该厂家属区的每户居民如果一个月的用电量不超过A度,那么这个月这户只需交10元用电费,如果超过A度,则这个月除了仍要交10元用电费外,超过部分还要按每度0.5元交费.①该厂某户居民2月份用电90度,超过了规定的A度,则超过部分应该交电费多少元(用A表示)?.②右表是这户居民3月、4月的用电情况和交费情况:根据右表数据,求电厂规定A度为.月份用电量交电费总数3月80度25元4月45度10元65115yxyx2102yxyx158xyyx31yxx032yx7第7课时一元二次方程【知识梳理】1.一元二次方程的概念及一般形式:ax2+bx+c=0(a≠0)2.一元二次方程的解法:①直接开平方法②配方法③公式法④因式分解法3.求根公式:当b2-4ac≥0时,一元二次方程ax2+bx+c=0(a≠0)的两根为4.根的判别式:当b2-4ac>0时,方程有实数根.当b2-4ac=0时,方程有实数根.当b2-4ac<0时,方程实数根.【思想方法】1.常用解题方法——换元法2.常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想【例题精讲】例1.选用合适的方法解下列方程:(1)(x-15)2-225=0;(2)3x2-4x-1=0(用公式法);例2.已知一元二次方程0437122mmmxxm)(有一个根为零,求m的值.例3.用22cm长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否
本文标题:沪科版数学中考总复习
链接地址:https://www.777doc.com/doc-8049503 .html