您好,欢迎访问三七文档
单元检测十二概率、随机变量及其分布(提升卷)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间100分钟,满分130分.4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题共60分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.先后抛掷两枚均匀的正方体骰子(它们六个面上分别标有点数1,2,3,4,5,6),骰子朝上的点数分别为X,Y,则log2XY=1的概率为()A.16B.536C.112D.12答案C解析由题意知X,Y应满足Y=2X,所以满足题意的有(1,2),(2,4),(3,6)三种,所以概率为336=112.2.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为()A.132B.164C.332D.364答案D解析从中有放回地取2次,所取号码的情况共有8×8=64(种),其中编号和不小于15的有3种,分别是(7,8),(8,7),(8,8),共3种.由古典概型概率公式可得所求概率为P=364.3.已知ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为()A.π4B.1-π4C.π8D.1-π8答案B解析根据几何概型得,取到的点到O的距离大于1的概率P=dD=圆外部分的面积矩形的面积=2-π22×1=1-π4.4.欧阳修《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”.卖油翁的技艺让人叹为观止.设铜钱是直径为4cm的圆,它中间有边长为1cm的正方形孔.若随机向铜钱上滴一滴油,则油滴(不计油滴的大小)正好落入孔中的概率为()A.14πB.14C.116πD.116答案A解析由题意得,所求的概率为12π×22=14π,故选A.5.一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为()A.25B.310C.15D.110答案C解析一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,任意按最后一位数字,不超过2次就按对的概率为:P=110+910×19=15.6.如图所示,在圆心角为90°的扇形AOB中,以圆心O作为起点作射线OC,OD,则使∠AOC+∠BOD<45°的概率为()A.12B.14C.18D.116答案C解析设∠AOC=x°,∠BOD=y°,把(x,y)看作坐标平面上的点,则试验的全部结果所构成的区域为Ω={(x,y)|0≤x≤90,0≤y≤90},若事件A表示∠AOC+∠BOD<45°,则其所构成的区域为A={(x,y)|x+y45,0≤x≤90,0≤y≤90},即图中的阴影部分,故S阴影=12×45×45.由几何概型的概率公式,得所求概率P(A)=12×45×4590×90=18.7.有一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明了一定的奖金金额,其余商标牌的背面是一张笑脸,若翻到笑脸,则不得奖,参加这个游戏的人有三次翻牌的机会.某人前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么此人第三次翻牌获奖的概率是()A.14B.16C.15D.320答案B解析因为20个商标有5个中奖,翻了两个都中奖,所以还剩18个,其中还有3个会中奖,所以这位观众第三次翻牌获奖的概率是318=16.故选B.8.(2018·福建省厦门外国语学校模拟)我国成功申办2022年第24届冬季奥林匹克运动会,届时冬奥会的高山速降运动将给我们以速度与激情的完美展现,某选手的速度ξ服从正态分布(100,σ2)(σ0),若ξ在(80,120)内的概率为0.7,则其速度超过120的概率为()A.0.05B.0.1C.0.15D.0.2答案C解析由题意可得,μ=100,且P(80<ξ<120)=0.7,则P(ξ<80或ξ>120)=1-P(80<ξ<120)=1-0.7=0.3.∴P(ξ>120)=12P(ξ<80或ξ>120)=0.15.则他速度超过120的概率为0.15.9.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.4B.0.6C.0.75D.0.8答案D解析设“某一天的空气质量为优良”为事件A,“随后一天的空气质量为优良”为事件B,则P(A)=0.75,P(AB)=0.6,∴P(B|A)=PABPA=0.60.75=0.8.10.随机变量X的分布列如下表,且E(X)=2,则D(2X-3)等于()X02aP16p13A.2B.3C.4D.5答案C解析p=1-16-13=12,E(X)=0×16+2×12+a×13=2,则a=3,∴D(X)=(0-2)2×16+(2-2)2×12+(3-2)2×13=1,∴D(2X-3)=22D(X)=4.11.(2018·黑龙江省哈尔滨市第六中学考试)甲、乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为23,且各局比赛结果相互独立,则在甲获得冠军的情况下,比赛进行了三局的概率为()A.13B.25C.23D.45答案B解析由题意,甲获得冠军的概率为23×23+23×13×23+13×23×23=2027,其中比赛进行了3局的概率为23×13×23+13×23×23=827,∴所求概率为827÷2027=25.12.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,数列{}an满足:an=-1,第n次摸到红球,1,第n次摸到白球,如果Sn为数列{}an的前n项和,那么S7=3的概率为()A.C57232·235B.C27232·135C.C57132·135D.C57132·235答案B解析据题意可知7次中有5次摸到白球,2次摸到红球,由独立重复试验即可确定其概率,故选B.第Ⅱ卷(非选择题共70分)二、填空题(本题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若某人在打靶时连续射击2次,则事件“至少有1次中靶”的对立事件是______________.答案两次都未中靶14.若连续掷两次骰子,第一次掷得的点数为m,第二次掷得的点数为n,则点P(m,n)落在圆x2+y2=16内的概率是________.(骰子为正方体,且六个面分别标有数字1,2,…,6)答案29解析由题意得,基本事件总数为36,点P落在圆内包含的基本事件有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共8个,由古典概型概率公式可得所求概率为836=29.15.设随机变量ξ的分布列为P(ξ=k)=ckk+1,k=1,2,3,c为常数,则P(0.5ξ2.5)=________.答案89解析随机变量ξ的分布列为P(ξ=k)=ckk+1,k=1,2,3,∴c2+c6+c12=1,即6c+2c+c12=1,解得c=43,∴P(0.5<ξ<2.5)=P(ξ=1)+P(ξ=2)=c2+c6=46×43=89.16.某篮球运动员投中篮球的概率为23,则该运动员“投篮3次至多投中1次”的概率是________.(结果用分数表示)答案727解析“投篮3次至多投中1次”包括只投中一次,和全部没有投中,故“投篮3次至多投中1次”的概率是C23·132·23+C33·133=727.三、解答题(本题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤)17.(12分)甲、乙、丙3人投篮,投进的概率分别是13,25,12.(1)现3人各投篮1次,求3人至少一人投进的概率;(2)用ξ表示乙投篮4次的进球数,求随机变量ξ的分布列及均值E(ξ)和方差D(ξ).解(1)记“甲投篮1次投进”为事件A,“乙投篮1次投进”为事件B,“丙投篮1次投进”为事件C,“至少一人投进”为事件D.P(D)=1-P(A)P(B)P(C)=45.(2)随机变量ξ的可能取值为0,1,2,3,4,且ξ~B4,25,所以,P(ξ=k)=Ck425k354-k(k=0,1,2,3,4),故随机变量ξ的分布列为ξ01234P816252166252166259662516625E(ξ)=0×81625+1×216625+2×216625+3×96625+4×16625=85,D(ξ)=2425.18.(12分)如图所示的茎叶图记录了甲、乙两组各5名同学的投篮命中次数,乙组记录中有一个数据模糊,无法确认,在图中用x表示.(1)若乙组同学投篮命中次数的平均数比甲组同学的平均数少1,求x的值及乙组同学投篮命中次数的方差;(2)在(1)的条件下,分别从甲、乙两组投篮命中次数低于10的同学中,各随机选取1名,求这2名同学的投篮命中次数之和为16的概率.解(1)依题意得x+8×2+9+105=7+8+9+11×25-1,解得x=6,x乙=415,s2=15415-62+415-82×2+415-92+415-102=1.76.(2)记甲组投篮命中次数低于10次的同学为A1,A2,A3,他们的命中次数分别为9,8,7.乙组投篮命中次数低于10次的同学为B1,B2,B3,B4,他们的命中次数分别为6,8,8,9.依题意,不同的选取方法有:(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(A3,B1),(A3,B2),(A3,B3),(A3,B4),共12种.设“这两名同学的投篮命中次数之和为16”为事件C,其中恰含有(A2,B2),(A2,B3),(A3,B4),共3种.∴P(C)=312=14.19.(13分)(2018·武汉重点中学模拟)某校为了更好地管理学生用手机问题,根据学生每月用手机时间(每月用手机时间总和)的长短将学生分为三类:第一类的时间区间在[0,30),第二类的时间区间在[30,60),第三类的时间区间在[60,720](单位:小时),并规定属于第三类的学生要进入“思想政治学习班”进行思想和心理的辅导.现对该校二年级1014名学生进行调查,恰有14人属于第三类,这14名学生被学校带去政治学习.由剩下的1000名学生用手机时间情况,得到如图所示频率分布直方图.(1)求这1000名学生每月用手机时间的平均数;(2)利用分层抽样的方法从1000名选出10名学生代表,若从该10名学生代表中任选两名学生,求这两名学生用手机时间属于不同类型的概率;(3)若二年级学生长期保持着这一用手机的现状,学校为了鼓励学生少用手机,连续10个月,每个月从这1000名学生中随机抽取1名,若取到的是第一类学生,则发放奖品一份,设X为获奖学生人数,求X的均值E(X)与方差D(X).解(1)平均数为5×0.010×10+15×0.030×10+25×0.040×10+35×0.010×10+45×0.006×10+55×0.004×10=23.4(小时).(2)由频率分布直方图可知,采用分层抽样抽取10名学生,其中8名为第一类学生,2名为第二类学生,则从该10名学生代表中抽取2名学生且这两名学生不属于同一类的概率为C18C12C210=1645.(3)由题可知,这1000名学生中第一类学生占80%,则每月从1000名学生中随机抽取1名学生,是第一类学生的概率为0.8,则连续10个
本文标题:2020届高考数学一轮复习 单元检测十二 概率、随机变量及其分布(提升卷)单元检测 理(含解析) 新
链接地址:https://www.777doc.com/doc-8063403 .html