您好,欢迎访问三七文档
测试42空间点、直线、平面间的位置关系高考概览高考在本考点的常考题型为选择题、解答题,分值为5分或12分,中等难度考纲研读1.理解空间直线、平面位置关系的定义2.了解可以作为推理依据的公理和定理3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题一、基础小题1.若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件答案A解析“两条直线为异面直线”⇒“两条直线无公共点”.“两直线无公共点”⇒“两直线异面或平行”.故选A.2.下列命题正确的个数为()①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A.0B.1C.2D.3答案C解析经过不共线的三点可以确定一个平面,∴①不正确;两条平行线可以确定一个平面,∴②正确;两两相交的三条直线可以确定一个或三个平面,∴③正确;命题④中没有说清三个点是否共线,∴④不正确.3.若直线上有两个点在平面外,则()A.直线上至少有一个点在平面内B.直线上有无穷多个点在平面内C.直线上所有点都在平面外D.直线上至多有一个点在平面内答案D解析根据题意,两点确定一条直线,那么由于直线上有两个点在平面外,则直线在平面外,只能是直线与平面相交,或者直线与平面平行,那么可知直线上至多有一个点在平面内.4.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过()A.点AB.点BC.点C但不过点MD.点C和点M答案D解析∵A,B∈γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.5.若a和b是异面直线,b和c是异面直线,则a和c的位置关系是()A.异面或平行B.异面或相交C.异面D.相交、平行或异面答案D解析异面直线不具有传递性,可以以长方体为载体加以说明,a,b异面,直线c的位置如图(可有三种情况)所示,故a,c可能相交、平行或异面.6.以下四个命题中:①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.正确命题的个数是()A.0B.1C.2D.3答案B解析①正确,否则三点共线和第四点必共面;②错误,如图三棱锥,能符合题意但A,B,C,D,E不共面;③错误,从②的几何体知;空间四边形为反例可知,④错误.7.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行答案C解析如果c与a,b都平行,那么由平行线的传递性知a,b平行,与异面矛盾.故选C.8.如图,平行六面体ABCD-A1B1C1D1中既与AB共面又与CC1共面的棱有________条.答案5解析依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行的棱有AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的棱有5条.二、高考小题9.(2018·全国卷Ⅱ)在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.22B.32C.52D.72答案C解析在正方体ABCD-A1B1C1D1中,CD∥AB,所以异面直线AE与CD所成的角为∠EAB,设正方体的棱长为2a,则由E为棱CC1的中点,可得CE=a,所以BE=5a,则tan∠EAB=BEAB=5a2a=52.故选C.10.(2015·广东高考)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.至多等于3B.至多等于4C.等于5D.大于5答案B解析首先我们知道正三角形的三个顶点满足两两距离相等,于是可以排除C,D.又注意到正四面体的四个顶点也满足两两距离相等,于是排除A,故选B.11.(2016·山东高考)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析因为直线a和直线b相交,所以直线a与直线b有一个公共点,而直线a,b分别在平面α,β内,所以平面α与β必有公共点,从而平面α与β相交;反之,若平面α与β相交,则直线a与直线b可能相交、平行、异面.故选A.三、模拟小题12.(2018·武昌调研)已知直线l和平面α,无论直线l与平面α具有怎样的位置关系,在平面α内总存在一条直线与直线l()A.相交B.平行C.垂直D.异面答案C解析当直线l与平面α平行时,在平面α内至少有一条直线与直线l垂直,当直线l⊂平面α时,在平面α内至少有一条直线与直线l垂直,当直线l与平面α相交时,在平面α内至少有一条直线与直线l垂直,所以无论直线l与平面α具有怎样的位置关系,在平面α内总存在一条直线与直线l垂直.13.(2018·福州五校联考)如图,已知在正方体ABCD-A1B1C1D1中,AC∩BD=F,DC1∩CD1=E,则直线EF是平面ACD1与()A.平面BDB1的交线B.平面BDC1的交线C.平面ACB1的交线D.平面ACC1的交线答案B解析连接BC1.因为E∈DC1,F∈BD,所以EF⊂平面BDC1,故平面ACD1∩平面BDC1=EF.故选B.14.(2018·湖北七市(州)联考)设直线m与平面α相交但不垂直,则下列说法中正确的是()A.在平面α内有且只有一条直线与直线m垂直B.过直线m有且只有一个平面与平面α垂直C.与直线m垂直的直线不可能与平面α平行D.与直线m平行的平面不可能与平面α垂直答案B解析对于A,在平面α内可能有无数条直线与直线m垂直,这些直线是互相平行的,A错误;对于B,因为直线m与平面α相交但不垂直,所以过直线m必有并且也只有一个平面与平面α垂直,B正确;对于C,类似于A,在平面α外可能有无数条直线垂直于直线m并且平行于平面α,C错误;对于D,与直线m平行且与平面α垂直的平面有无数个,D错误.故选B.15.(2018·兰州市高考实战模拟)已知长方体ABCD-A1B1C1D1中,AA1=AB=3,AD=1,则异面直线B1C和C1D所成角的余弦值为()A.64B.63C.26D.36答案A解析如图,连接A1D,A1C1,由题易知B1C∥A1D,∴∠C1DA1是异面直线B1C与C1D所成的角,又AA1=AB=3,AD=1,∴A1D=2,DC1=6,A1C1=2,由余弦定理,得cos∠C1DA1=C1D2+A1D2-A1C212×C1D×A1D=64,故选A.16.(2018·河北石家庄质检)下列正方体或四面体中,P,Q,R,S分别是所在棱的中点,这四点不共面的一个图是()答案D解析(利用“经过两条平行直线,有且只有一个平面”判断)对选项A,易判断PR∥SQ,故点P,Q,R,S共面;对选项B,易判断QR∥SP,故点P,Q,R,S共面;对选项C,易判断PQ∥SR,故点P,Q,R,S共面;而选项D中的RS,PQ为异面直线,故选D.17.(2018·武汉调研)如图为正方体表面的一种展开图,则图中的AB,CD,EF,GH在原正方体中互为异面直线的有________对.答案3解析平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面直线的有3对.18.(2018·山西四校联考)如图所示,在空间四边形A-BCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且CFCB=CGCD=23,则下列说法正确的是________.(填写所有正确说法的序号)①EF与GH平行;②EF与GH异面;③EF与GH的交点M可能在直线AC上,也可能不在直线AC上;④EF与GH的交点M一定在直线AC上.答案④解析连接EH,FG(图略),依题意,可得EH∥BD,FG∥BD,故EH∥FG,所以E,F,G,H共面.因为EH=12BD,FG=23BD,故EH≠FG,所以四边形EFGH是梯形,EF与GH必相交,设交点为M.因为点M在EF上,故点M在平面ACB上.同理,点M在平面ACD上,所以点M是平面ACB与平面ACD的交点,又AC是这两个平面的交线,所以点M一定在直线AC上.一、高考大题1.(2017·全国卷Ⅲ)如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.解(1)证明:如图,取AC的中点O,连接DO,BO.因为AD=CD,所以AC⊥DO.又由于△ABC是正三角形,所以AC⊥BO.从而AC⊥平面DOB,故AC⊥BD.(2)连接EO.由(1)及题设知∠ADC=90°,所以DO=AO.在Rt△AOB中,BO2+AO2=AB2.又AB=BD,所以BO2+DO2=BO2+AO2=AB2=BD2,故∠DOB=90°.由题设知△AEC为直角三角形,所以EO=12AC.又△ABC是正三角形,且AB=BD,所以EO=12BD.故E为BD的中点,从而E到平面ABC的距离为D到平面ABC的距离的12,四面体ABCE的体积为四面体ABCD的体积的12,即四面体ABCE与四面体ACDE的体积之比为1∶1.2.(2015·四川高考)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论;(3)证明:直线DF⊥平面BEG.解(1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH,证明如下:因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是四边形BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH.因为ABCD-EFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG.又EG⊥FH,DH∩FH=H,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF⊥BG.又EG∩BG=G,所以DF⊥平面BEG.二、模拟大题3.(2018·河南洛阳月考)如图所示,正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图所示,连接CD1,EF,A1B,∵E,F分别是AB和AA1的中点,∴FE∥A1B且EF=12A1B.∵A1D1綊BC,∴四边形A1BCD1是平行四边形,∴A1B∥D1C,∴FE∥D1C,∴EF与CD1可确定一个平面,即E,C,D1,F四点共面.(2)由(1)知EF∥CD1,且EF=12CD1,∴四边形CD1FE是梯形,∴直线CE与D1F必相交,设交点为P,则P∈CE⊂平面ABCD,且P∈D1F⊂平面A1ADD1,∴P∈平面ABCD且P∈平面A1ADD1.又平面ABCD∩平面A1ADD1=AD,∴P∈AD,∴CE,D1F,DA三线共点.4.(2018·河南焦作一模)如图所示,平面四边形ADEF所在的平面与梯形ABCD所在的平面垂直,AD⊥CD,AD⊥ED,AF∥DE,AB∥CD,CD=2AB=2AD=2ED=xAF.(1)若四点F,B,C,E共面,AB=a,求x的值;(2)求证:平面CBE⊥平面EDB.解(1)∵AF∥DE,AB∥DC,AF∩AB=A,DE∩DC=D,∴平面ABF∥平面DCE.∵四
本文标题:2020高考数学刷题首选卷 第六章 立体几何 考点测试42 空间点、直线、平面间的位置关系 文(含解
链接地址:https://www.777doc.com/doc-8064338 .html