您好,欢迎访问三七文档
核心素养提升练四十三直线、平面垂直的判定及其性质(30分钟60分)一、选择题(每小题5分,共30分)1.m是一条直线,α,β是两个不同的平面,以下命题正确的是()A.若m∥α,α∥β,则m∥βB.若m∥α,m∥β,则α∥βC.若m∥α,α⊥β,则m⊥βD.若m∥α,m⊥β,则α⊥β【解析】选D.A.若m∥α,α∥β,则m∥β或m⊂β,A错;B,若m∥α,m∥β,则α∥β或α∩β=l,B错;C,若m∥α,α⊥β,则m与β相交或m∥β或m⊂β,C错;D,因为m∥α,存在直线n,使m∥n,n⊂α.因为m⊥β,所以n⊥β.又因为n⊂β,所以α⊥β.2.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题正确的是()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α【解析】选C.A中,由m⊥n,n∥α可得m∥α或m与α相交或m⊥α,错误;B中,由m∥β,β⊥α可得m∥α或m与α相交或m⊂α,错误;C中,由m⊥β,n⊥β可得m∥n,又n⊥α,所以m⊥α,正确;D中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误.3.下列三个命题中,正确命题的个数是()①若平面α⊥平面γ,且平面β⊥平面γ,则α∥β;②平面α⊥平面β,且α∩β=l,点A∈α,A∉l,若直线AB⊥l,则AB⊥β;③直线m,n为异面直线,且m⊥平面α,n⊥平面β,若m⊥n,则α⊥β.A.0B.1C.2D.3【解析】选B.①,例如墙角的三个面,则α⊥β;②,如果加入条件AB⊂α,则AB⊥β;③,从向量角度看,m与n分别是α,β的法向量,显然m⊥n,即α⊥β.所以只有③正确.4.四面体P-ABC的四个顶点都在球O的球面上,PA=8,BC=4,PB=PC=AB=AC,且平面PBC⊥平面ABC,则球O的表面积为()A.64πB.65πC.66πD.128π【解析】选B.如图,D,E分别为BC,PA的中点,易知球心点O在线段DE上,因为PB=PC=AB=AC,则PD⊥BC,AD⊥BC,PD=AD.又因为平面PBC⊥平面ABC,平面PBC∩平面ABC=BC,所以PD⊥平面ABC,所以PD⊥AD,所以PD=AD=4.因为点E是PA的中点,所以ED⊥PA,且DE=EA=PE=4.设球O的半径为R,OE=x,则OD=4-x.在Rt△OEA中,有R2=16+x2,在Rt△OBD中,有R2=4+(4-x)2,解得R2=,所以S=4πR2=65π.5.如图,在四棱锥P-ABCD中,△PAB与△PBC是正三角形,平面PAB⊥平面PBC,AC⊥BD,则下列结论不一定成立的是()A.PB⊥ACB.PD⊥平面ABCDC.AC⊥PDD.平面PBD⊥平面ABCD【解析】选B.取BP的中点O,连接OA,OC,易得BP⊥OA,BP⊥OC⇒BP⊥平面OAC⇒BP⊥AC⇒选项A正确;又AC⊥BD⇒AC⊥平面BDP⇒AC⊥PD,平面PBD⊥平面ABCD,故选项C,D正确.6.直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF相交于点E.要使AB1⊥平面C1DF,则线段B1F的长为()A.B.1C.D.2【解析】选A.设B1F=x,因为AB1⊥平面C1DF,DF⊂平面C1DF,所以AB1⊥DF.由已知可得A1B1=,设Rt△AA1B1斜边AB1上的高为h,则DE=h.又2×=h,所以h=,DE=.在Rt△DB1E中,B1E==.由面积相等得×=x,得x=.二、填空题(每小题5分,共10分)7.α,β是两个平面,AB,CD是两条线段,已知α∩β=EF,AB⊥α于B,CD⊥α于D,若增加一个条件,就能得出BD⊥EF,现有下列条件:①AC⊥β;②AC与α,β所成的角相等;③AC与CD在β内的射影在同一条直线上;④AC∥EF.其中能成为增加条件的序号是________.【解析】由题意得,AB∥CD,所以A,B,C,D四点共面,①因为AC⊥β,EF⊂β,所以AC⊥EF,又因为AB⊥α,EF⊂α,所以AB⊥EF,因为AB∩AC=A,所以EF⊥平面ABDC,又因为BD⊂平面ABDC,所以BD⊥EF,故①正确;②由①可知,若BD⊥EF成立,则有EF⊥平面ABDC,则有EF⊥AC成立,而AC与α,β所成角相等是无法得到EF⊥AC的,故②错误;③由AC与CD在β内的射影在同一条直线上可知EF⊥AC,由①可知③正确;④仿照②的分析过程可知④错误.答案:①③8.如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.【解析】由题意知PA⊥平面ABC,所以PA⊥BC.又AC⊥BC,且PA∩AC=A,所以BC⊥平面PAC,所以BC⊥AF.因为AF⊥PC,且BC∩PC=C,所以AF⊥平面PBC,所以AF⊥PB,又AE⊥PB,AE∩AF=A,所以PB⊥平面AEF,所以PB⊥EF.故①②③正确.答案:①②③三、解答题(每小题10分,共20分)9.如图,在三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD.(2)若AB=BD=CD=1,M为AD中点,求三棱锥A-MBC的体积.【解析】(1)因为AB⊥平面BCD,CD⊂平面BCD,所以AB⊥CD.又因为CD⊥BD,AB∩BD=B,AB⊂平面ABD,BD⊂平面ABD,所以CD⊥平面ABD.(2)由AB⊥平面BCD,得AB⊥BD.又AB=BD=1,所以S△ABD=×12=.因为M是AD的中点,所以S△ABM=S△ABD=.根据(1)知,CD⊥平面ABD,则三棱锥C-ABM的高h=CD=1,故VA-MBC=VC-ABM=S△ABM·h=.10.如图,在四棱锥P-ABCD中,四边形ABCD是菱形,△PAD≌△BAD,平面PAD⊥平面ABCD,AB=4,PA=PD,M在棱PD上运动.(1)当M在何处时,PB∥平面MAC.(2)已知O为AD的中点,AC与OB交于点E,当PB∥平面MAC时,求三棱锥E-BCM的体积.【解析】(1)如图,设AC与BD相交于点N,当M为PD的中点时,PB∥平面MAC,证明:因为四边形ABCD是菱形,可得DN=NB,又因为M为PD的中点,可得DM=MP,所以NM为△BDP的中位线,可得NM∥PB,又因为NM⊂平面MAC,PB⊄平面MAC,所以PB∥平面MAC.(2)因为O为AD的中点,PA=PD,则OP⊥AD,又△PAD≌△BAD,所以OB⊥AD,且OB=2,又因为△AEO∽△CEB,所以==,所以BE=OB=,所以S△EBC=×4×=.又因为OP=4×=2,点M为PD的中点,所以M到平面EBC的距离为,所以VE-BCM=VM-EBC=××=.(20分钟40分)1.(5分)如图,在三棱锥D�ABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BCDC.平面ABC⊥平面BDE,且平面ACD⊥平面BDED.平面ABC⊥平面ACD,且平面ACD⊥平面BDE【解析】选C.因为AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.又AC⊂平面ACD,所以平面ACD⊥平面BDE.2.(5分)下列命题中错误的是()A.如果直线a与平面α不平行,则平面α内不存在与a平行的直线B.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么直线l⊥平面γC.如果直线l⊥平面β,那么过直线l的所有平面都垂直于平面βD.一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交【解析】选A.如果直线a与平面α不平行,则直线a可能是平面α内一条直线,所以A错误;在平面γ内作两条相交直线m,n分别垂直于平面α与平面γ的交线及平面β与平面γ的交线,则由平面α⊥平面γ,平面β⊥平面γ,得m,n分别垂直于平面α及平面β,即m,n都垂直于直线l,因此直线l⊥平面γ,即B正确;由面面垂直的判定定理可知C正确;当一条直线与两个平行平面中的一个平面相交时,若此直线在另一个平面内,则与原平面无交点,矛盾,若此直线与另一个平面平行,则可得此直线与原平面平行或在原平面内,矛盾,因此此直线必与另一个平面相交,即D正确.3.(5分)在Rt△ABC中,AC⊥BC,BC=3,AB=5,点D,E分别在AC,AB边上,且DE∥BC,沿着DE将△ADE折起至△A′DE的位置,使得平面A′DE⊥平面BCDE,其中点A′为点A翻折后对应的点,则当四棱锥A′-BCDE的体积取得最大值时,AD的长为________.【解析】由勾股定理易得:AC=4,设AD=x,则CD=4-x,而△AED∽△ABC,故DE=x,四棱锥A′-BCDE的体积:V(x)=×××(4-x)×x=(16x-x3)(0x4).求导可得:V′(x)=(16-3x2)(0x4),当0x时,V′(x)0,V(x)单调递增;当x4时,V′(x)0,V(x)单调递减;故当x=时,V(x)取得最大值.答案:4.(12分)如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC.(2)求证:平面MOC⊥平面VAB.(3)求三棱锥V-ABC的体积.【解析】(1)因为点O,M分别为AB,VA的中点,所以OM∥VB.又因为VB⊄平面MOC,所以VB∥平面MOC.(2)因为AC=BC,点O为AB的中点,所以OC⊥AB.又因为平面VAB⊥平面ABC,且OC⊂平面ABC,所以OC⊥平面VAB.又因为OC⊂平面MOC,所以平面MOC⊥平面VAB.(3)在等腰直角三角形ACB中,AC=BC=,所以AB=2,OC=1.所以等边三角形VAB的面积S△VAB=.又因为OC⊥平面VAB,所以三棱锥C-VAB的体积等于×OC×S△VAB=.又因为三棱锥V-ABC的体积与三棱锥C-VAB的体积相等,所以三棱锥V-ABC的体积为.5.(13分)如图M,N,P分别是正方体ABCD-A1B1C1D1的棱AB,BC,DD1上的点.(1)若=,求证:无论点P在D1D上如何移动,总有BP⊥MN.(2)棱DD1上是否存在这样的点P,使得平面APC1⊥平面ACC1?证明你的结论.【解析】(1)连接AC,BD,在△ABC中,因为=,所以MN∥AC.又因为AC⊥BD,DD1⊥底面ABCD.所以DD1⊥AC,因为BD∩DD1=D,所以AC⊥平面BDD1B1.所以MN⊥平面BDD1B1.因为BP⊂平面BDD1B1,所以MN⊥BP.(2)假设存在点P,使平面APC1⊥平面ACC1,过点P作PF⊥AC1,则PF⊥平面ACC1.又因为BD⊥平面ACC1,所以PF∥BD,而两平行线PF,BD所确定的平面即为两相交直线BD,DD1确定的对角面BB1D1D,所以F为AC1与对角面BB1D1D的交点,故F为AC1的中点,由PF∥BD,P∈DD1知,点P也是DD1的中点.显然,当点P为DD1的中点,点F为AC1的中点时,AP=PC1,所以PF⊥AC1又PF∥BD,BD⊥AC,所以PF⊥AC.从而PF⊥平面ACC1,则平面APC1⊥平面ACC1.故存在点P,当点P为DD1中点时,平面APC1⊥平面ACC1.
本文标题:(黄冈名师)2020版高考数学大一轮复习 核心素养提升练四十三 9.4 直线、平面垂直的判定及其性质
链接地址:https://www.777doc.com/doc-8069788 .html