您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 八年级下册-专题-选择方案
八年级下册19.3课题学习选择方案(1)下表给出A,B,C三种上宽带网的收费方式:选取哪种方式能节省上网费?该问题要我们做什么?选择方案的依据是什么?收费方式月使用费/元包时上网时间/h超时费/(元/min)A30250.05B50500.05C120不限时根据省钱原则选择方案提出问题分析问题费用月使用费超时费=+超时使用价格超时时间×超时费=要比较三种收费方式的费用,需要做什么?分别计算每种方案的费用.怎样计算费用?分析问题A,B,C三种方案中,所需要的费用是固定的还是变化的?方案C费用固定;方案A,B的费用在超过一定时间后,随上网时间变化,是上网时间的函数.分析问题方案A费用:方案B费用:方案C费用:y1=30,0≤t≤25;3t-45,t>25.y2=50,0≤t≤50;3t-100,t>50.y3=120.请分别写出三种方案的上网费用y元与上网时间th之间的函数解析式.能把这个问题描述为函数问题吗?设上网时间为t,方案A,B,C的上网费用分别为y1元,y2元,y3元,且分析问题请比较y1,y2,y3的大小.这个问题看起来还是有点复杂,难点在于每一个函数的解析都是分类表示的,需要分类讨论,而怎样分类是难点.怎么办?——先画出图象看看.y1=30,0≤t≤25;3t-45,t>25.y2=50,0≤t≤50;3t-100,t>50.y3=120.分析问题.y1=30,0≤t≤25;3t-45,t>25.A50,0≤t≤50;3t-100,t>50.y2=By3=120.C1205030255075Otyy1y2y3解决问题结合图象可知:(1)若y1=y2,即3t-45=50,解方程,得t=31;23解:设上网时间为th,方案A,B,C的上网费用分别为y1元,y2元,y3元,则23(2)若y1<y2,即3t-45<50,解不等式,得t<31;23(3)若y1>y2,即3t-45>50,解不等式,得t>31.y1=30,0≤t≤25;3t-45,t>25.y2=50,0≤t≤50;3t-100,t>50.y3=120.解决问题解:令3t-100=120,解方程,得t=73;13当上网时间不超过31小时40分,选择方案A最省钱;当上网时间为31小时40分至73小时20分,选择方案B最省钱;当上网时间超过73小时20分,选择方案C最省钱.13令3t-100120,解不等式,得t73.令3t-100>120,解不等式,得t>7331某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师。现有甲、乙两种大客车,它们的载客量和租金如表:甲种客车乙种客车载客量(单位:人/辆)4530租金(单位:元/辆)400280(1)共需租多少辆汽车?(2)给出最节省费用的租车方案。(1)要保证240名师生有车坐(2)要使每辆汽车上至少要有1名教师根据(1)可知,汽车总数不能小于___;根据(2)可知,汽车总数不能大于___。综合起来可知汽车总数为___。设租用x辆甲种客车,则租车费用y(单位:元)是x的函数,即问题666y=400x+280(6-x)化简为:y=120x+1680根据问题中的条件,自变量x的取值应有几种能?为使240名师生有车坐,x不能小于_;为使租车费用不超过2300元,X不能超过_。综合起来可知x的取值为__。454、545x+30(6-x)≥24015x≥60x≥4400x+280(6-x)≤2300120x≤620x≤31/6∴4≤x≤31/64辆甲种客车,2辆乙种客车;5辆甲种客车,1辆乙种客车;y1=120×4+1680=2160y2=120×5+1680=2280应选择方案一,它比方案二节约120元。在考虑上述问题的基础上,你能得出几种不同的租车方案?为节省费用应选择其中的哪种方案?试说明理由。y=120x+1680
本文标题:八年级下册-专题-选择方案
链接地址:https://www.777doc.com/doc-8130393 .html