您好,欢迎访问三七文档
第十一章计数原理、概率、随机变量及其分布第六节n次独立重复试验与二项分布2[最新考纲]1.了解条件概率的概念,了解两个事件相互独立的概念.2.理解n次独立重复试验的模型及二项分布,并能解决一些简单问题.3课前自主回顾41.条件概率在已知B发生的条件下,事件A发生的概率叫作B发生时A发生的_________,用符号______来表示,其公式为P(A|B)=_______(P(B)>0).条件概率P(A|B)PABPB52.相互独立事件(1)一般地,对两个事件A,B,如果________________,则称A,B相互独立.(2)如果A,B相互独立,则A与B,A与B,A与B也相互独立.(3)如果A1,A2,…,An相互独立,则有P(A1A2…An)=P(A1)P(A2)…P(An).P(AB)=P(A)P(B)63.独立重复试验与二项分布(1)独立重复试验在相同条件下重复做的n次试验称为n次独立重复试验,其中Ai(i=1,2,…,n)是第i次试验结果,则P(A1A2A3…An)=____________________.P(A1)P(A2)P(A3)…P(An)7(2)二项分布进行n次试验,如果满足以下条件:①每次试验只有两个相互对立的结果,可以分别称为“成功”和“失败”;②每次试验“成功”的概率均为p,“失败”的概率均为1-p;8③各次试验是___________的.用X表示这n次试验中成功的次数,则P(X=k)=____________(k=0,1,2,…,n).若一个随机变量X的分布列如上所述,称X服从参数为n,p的二项分布,简记为X~B(n,p).相互独立Cknpk(1-p)n-k9[常用结论]牢记且理解事件中常见词语的含义(1)A,B中至少有一个发生的事件为A+B;(2)A,B都发生的事件为AB;(3)A,B都不发生的事件为AB;(4)A,B恰有一个发生的事件为AB+AB;(5)A,B至多一个发生的事件为AB+AB+AB.10[答案](1)×(2)√(3)×(4)√一、思考辨析(正确的打“√”,错误的打“×”)(1)相互独立事件就是互斥事件.()(2)若事件A,B相互独立,则P(B|A)=P(B).()(3)公式P(AB)=P(A)P(B)对任意两个事件都成立.()(4)二项分布是一个概率分布列,是一个用公式P(X=k)=Cknpk(1-p)n-k,k=0,1,2,…,n表示的概率分布列,它表示了n次独立重复试验中事件A发生的次数的概率分布.()11二、教材改编1.如果某一批玉米种子中,每粒发芽的概率均为23,那么播下5粒这样的种子,恰有2粒不发芽的概率是()A.80243B.8081C.163243D.16372912A[用X表示发芽的粒数,则X~B5,23,则P(X=3)=C35×233×1-232=80243,故播下5粒这样的种子,恰有2粒不发芽的概率为80243.]13B[因为两人加工成一等品的概率分别为23和34,且相互独立,所以两个零件中恰好有一个一等品的概率P=23×14+13×34=512.]2.两个实习生每人加工一个零件,加工成一等品的概率分别为23和34,两个零件中能否被加工成一等品相互独立,则这两个零件中恰好有一个一等品的概率为()A.12B.512C.14D.1614D[根据题意,在第1次抽到文科题后,还剩4道题,其中有3道理科题;则第2次抽到理科题的概率P=34,故选D.]3.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,则在第1次抽到文科题的条件下,第2次抽到理科题的概率为()A.12B.25C.35D.3415X~B(100,0.02)[根据题意,X~B(100,0.02).]4.一批产品的二等品率为0.02,从这批产品中每次随机抽取一件,有放回地抽取100次,X表示抽到的二等品的件数,则X服从二项分布,记作________.16课堂考点探究17考点1条件概率求条件概率的2种方法(1)利用定义,分别求P(A)和P(AB),得P(B|A)=PABPA,这是求条件概率的通法.(2)借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件A与事件B的交事件中包含的基本事件数n(AB),得P(B|A)=nABnA.181.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=()A.18B.14C.25D.1219B[法一(直接法):P(A)=C23+C22C25=410=25,P(AB)=C22C25=110.由条件概率计算公式,得P(B|A)=PABPA=11025=14.法二(缩小样本空间法):事件A包括的基本事件:(1,3),(1,5),(3,5),(2,4)共4个.事件AB发生的结果只有(2,4)一种情形,即n(AB)=1.故由古典概型概率P(B|A)=nABnA=14.]200.72[设“种子发芽”为事件A,“种子成长为幼苗”为事件AB(发芽,又成活为幼苗).出芽后的幼苗成活率为P(B|A)=0.8,P(A)=0.9,根据条件概率公式得P(AB)=P(B|A)·P(A)=0.8×0.9=0.72,即这粒种子能成长为幼苗的概率为0.72.]2.(2019·运城模拟)有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.21判断所求概率为条件概率的主要依据是题目中的“已知”“在……前提下(条件下)”等字眼.第2题中没有出现上述字眼,但已知事件的发生影响了所求事件的概率,也认为是条件概率问题.运用P(AB)=P(B|A)·P(A),求条件概率的关键是求出P(A)和P(AB),要注意结合题目的具体情况进行分析.22考点2相互独立事件的概率求相互独立事件同时发生的概率的方法(1)首先判断几个事件的发生是否相互独立.(2)求相互独立事件同时发生的概率的方法主要有:①利用相互独立事件的概率乘法公式直接求解.②正面计算较繁或难以入手时,可从其对立事件入手计算.23(1)天气预报,在元旦假期甲地的降雨概率是0.2,乙地的降雨概率是0.3.假设在这段时间内两地是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为()A.0.2B.0.3C.0.38D.0.5624(2)某乒乓球俱乐部派甲、乙、丙三名运动员参加某运动会的单打资格选拔赛,本次选拔赛只有出线和未出线两种情况.规定一名运动员出线记1分,未出线记0分.假设甲、乙、丙出线的概率分别为23,34,35,他们出线与未出线是相互独立的.①求在这次选拔赛中,这三名运动员至少有一名出线的概率;②记在这次选拔赛中,甲、乙、丙三名运动员的得分之和为随机变量ξ,求随机变量ξ的分布列.25(1)C[设甲地降雨为事件A,乙地降雨为事件B,则两地恰有一地降雨为AB+AB,∴P(AB+AB)=P(AB)+P(AB)=P(A)P(B)+P(A)P(B)=0.2×0.7+0.8×0.3=0.38.](2)[解]①记“甲出线”为事件A,“乙出线”为事件B,“丙出线”为事件C,“甲、乙、丙至少有一名出线”为事件D,则P(D)=1-P(ABC)=1-13×14×25=2930.26②由题意可得,ξ的所有可能取值为0,1,2,3,则P(ξ=0)=P(ABC)=13×14×25=130;P(ξ=1)=P(ABC)+P(ABC)+P(ABC)=23×14×25+13×34×25+13×14×35=1360;P(ξ=2)=P(ABC)+P(ABC)+P(ABC)=23×34×25+23×14×35+13×34×35=920;27P(ξ=3)=P(ABC)=23×34×35=310.所以ξ的分布列为ξ0123P130136092031028含有“恰好、至多、至少”等关键词的问题,求解的关键在于正确分析所求事件的构成,将其转化为彼此互斥事件的和或相互独立事件的积,然后利用相关公式进行计算.29[教师备选例题]从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.30[解](1)随机变量X的所有可能取值为0,1,2,3,则P(X=0)=1-12×1-13×1-14=14,P(X=1)=12×1-13×1-14+1-12×13×1-14+1-12×1-13×14=1124,P(X=2)=1-12×13×14+12×1-13×14+12×13×1-14=14,31P(X=3)=12×13×14=124.所以随机变量X的分布列为X0123P1411241412432(2)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)=P(Y=0)P(Z=1)+P(Y=1)P(Z=0)=14×1124+1124×14=1148.所以这2辆车共遇到1个红灯的概率为1148.33(2019·全国卷Ⅱ)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.34[解](1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.35考点3独立重复试验与二项分布独立重复试验的概率独立重复试验概率求解的策略(1)首先判断问题中涉及的试验是否为n次独立重复试验,判断时注意各次试验之间是相互独立的,并且每次试验的结果只有两种,在任何一次试验中,某一事件发生的概率都相等,然后用相关公式求解.(2)解此类题时常用互斥事件概率加法公式,相互独立事件概率乘法公式及对立事件的概率公式.36(1)位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P移动五次后位于点(2,3)的概率是________.(2)(2019·苏州模拟)某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.37①假设这名射手射击5次,求恰有2次击中目标的概率;②假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;③假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总分数,求ξ的分布列.38(1)516[由于质点每次移动一个单位,移动的方向为向上或向右,移动五次后位于点(2,3),所以质点P必须向右移动两次,向上移动三次,故其概率为C35123·122=C35125=516.](2)[解]①设X为射手在5次射击中击中目标的次数,则X~B5,23.在5次射击中,恰有2次击中目标的概率为P(X=2)=C25×
本文标题:2021高考数学一轮复习 第11章 计数原理、概率、随机变量及其分布 第6节 n次独立重复试验与二项
链接地址:https://www.777doc.com/doc-8217622 .html