您好,欢迎访问三七文档
第七章静电场带电粒子(带电体)在电场中运动的综合问题栏目导航123板块一考点突破板块二素养培优板块三跟踪检测考点突破记要点、练高分、考点通关板块一考点一带电粒子(带电体)在交变电场中的运动——多维探究|记要点|1.常见的交变电场常见的交变电场的电压波形有方形波、锯齿波、正弦波等.2.常见的题目类型(1)粒子做单向直线运动(一般用牛顿运动定律求解).(2)粒子做往返运动(一般分段研究).(3)粒子做偏转运动(一般分解研究).3.分析两个关系(1)力和运动的关系.(2)功能关系.4.注意全面分析(1)注重全面分析带电粒子受力特点和运动情况,抓住粒子的运动具有周期性和在空间上具有对称性的特征,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的边界条件.(2)某一过程中的匀变速运动(曲线时将运动分解)可利用牛顿运动定律,结合匀变速直线运动的规律分析求解.|明考向|考向一带电粒子(带电体)做单向直线运动【例1】(多选)在绝缘水平桌面(桌面足够大)上方充满平行桌面的电场,其电场强度E随时间t的变化关系如图所示,小物块的电荷量为q=+1×10-4C,将其放在该水平桌面上并由静止释放,小物块的速度v与时间t的关系如图所示,重力加速度g取10m/s2,则下列说法正确是()A.物块在4s内位移是6mB.物块的质量是2kgC.物块与水平桌面间动摩擦因数是0.2D.物块在4s内电势能减少了18J[解析]物块在4s内位移为x=12×2×(2+4)m=6m,故选项A正确;由图可知,前2s物块做匀加速直线运动,由牛顿第二定律有qE1-μmg=ma,由图线知加速度为a=1m/s2,2s后物块做匀速运动,由平衡条件有qE2=μmg,联立解得q(E1-E2)=ma,由图可得E1=3×104N/C,E2=2×104N/C,代入数据解得m=1kg,由qE2=μmg可得μ=0.2,故选项B错误,C正确;物块在前2s的位移x1=12×2×2m=2m,物块在后2s的位移为x2=vt2=4m,电场力做正功W=qE1x1+qE2x2=6J+8J=14J,则电势能减少了14J,故选项D错误.[答案]AC考向二带电粒子(带电体)做往返运动【例2】(多选)如图所示为匀强电场的电场强度E随时间t变化的图象.当t=0时,在此匀强电场中由静止释放一个带电粒子,设带电粒子只受电场力的作用,则下列说法中正确的是()A.带电粒子将始终向同一个方向运动B.2s末带电粒子回到原出发点C.3s末带电粒子的速度为零D.0~3s内,电场力做的总功为零[解析]设第1s内粒子的加速度为a1,第2s内的加速度为a2,由a=qEm可知,a2=2a1,可见,粒子第1s内向负方向运动,1.5s末粒子的速度为零,然后向正方向运动,至3s末回到原出发点,粒子的速度为0,vt图象如图所示,由动能定理可知,此过程中电场力做的总功为零,综上所述,可知C、D正确.[答案]CD考向三带电粒子(带电体)做偏转运动【例3】(2018届哈尔滨九中模拟)如图甲所示,热电子由阴极飞出时的初速度忽略不计,电子发射装置的加速电压为U0,电容器极板长L=10cm,极板间距d=10cm,下极板接地,电容器右端到荧光屏的距离也是L=10cm,在电容器两极板间接一交变电压,上极板的电势随时间变化的图象如图乙所示.每个电子穿过极板的时间都极短,可以认为电子穿过极板的过程中电压是不变的.求:(1)在t=0.06s时刻,电子打在荧光屏上的何处;(2)荧光屏上有电子打到的区间长度.[解析](1)设电子经电压U0加速后的速度为v0,根据动能定理得eU0=12mv02设电容器间偏转电场的场强为E,则有E=Ud设电子经时间t通过偏转电场,偏离轴线的侧向位移为y,则有沿中心轴线方向有t=Lv0垂直中心轴线方向有a=eEmy=12at2=eUL22mdv02=UL24U0d设电子通过偏转电场过程中产生的侧向速度为vy,偏转角为θ,则电子通过偏转电场时有vy=attanθ=vyv0电子在荧光屏上偏离O点的距离为Y=y+Ltanθ=UL2U0dL2+L由题图乙知t=0.06s时刻U=1.8U0解得Y=13.5cm.(2)由题知电子偏转量y的最大值为d2,可得当偏转电压超过2U0时,电子就打不到荧光屏上了.代入上式得Y=3L2所以荧光屏上电子能打到的区间长度为2Y=3L=30cm.[答案](1)13.5cm(2)30cm|练高分|1.(多选)如图甲所示,A板的电势UA=0,B板的电势UB随时间的变化规律如图乙所示.电子只受电场力的作用,且初速度为零(设两板间距足够大),则()A.若电子是在t=0时刻进入的,它将一直向B板运动B.若电子是在t=0时刻进入的,它将时而向B板运动,时而向A板运动,最后打在B板上C.若电子是在t=T8时刻进入的,它将时而向B板运动,时而向A板运动,最后打在B板上D.若电子是在t=T4时刻进入的,它将时而向B板运动,时而向A板运动解析:选ACD解法一:若电子在t=0时刻进入板间电场,电子将在一个周期内先做匀加速运动后做匀减速运动,以后沿同一方向重复这种运动,直到碰到B板,故A正确,B错误;若电子在t=T8时刻进入板间,则电子在从此计时起一个周期中的前68T向B板运动,后28T向A板运动,以后重复这种运动,直到碰到B板,故C正确;若电子在t=T4时刻进入,电子将在从此计时起一个周期中的前T2向B板运动,后T2向A板运动,电子将在板间做往复运动,故D正确.解法二:图象法.选取竖直向上为正方向,作出电子的vt图象如图所示,根据vt图象与时间轴围成的面积表示位移可知A、C、D正确.2.(2019届河北邢台模拟)如图甲所示,长为L、间距为d的两金属板A,B水平放置,ab为两板的中心线,一个带电粒子以速度v0从a点水平射入,沿直线从b点射出,粒子质量为m,电荷量为q.若将两金属板接到如图乙所示的交变电压上,欲使该粒子仍能从b点以速度v0射出,求:(1)交变电压的周期T应满足什么条件,粒子从a点射入金属板的时刻应满足什么条件;(2)两板间距d应满足的条件.解析:(1)要使带电粒子从b点以速度v0射出,应满足Lv0=nT(n为整数),则T=Lnv0(n为整数),由运动的对称性可知,射入的时刻应为t=kT2+T4,即t=2k+1L4nv0(k为整数).(2)第一次加速过程有y1=12at2=12×qU0mdT42,将T代入得y1=qU0L232mdn2v02要使粒子不打在板上,应满足d2≥2y1即d≥Lnv0qU08m(n为整数).答案:(1)T=Lnv0(n为整数)t=2k+1L4nv0(k为整数)(2)d≥Lnv0qU08m(n为整数)考点二电场中的力电综合问题——师生共研|记要点|电场中带电粒子(微粒)的运动及电场中力的性质和能的性质主要有以下几个重点考查内容1.以电场强度为代表的反映电场力的性质的物理量:通过场强的计算、库仑定律的应用、带电粒子(微粒)的加速和偏转等知识,与力学观点结合考查运动类问题.2.以电势为代表的反映电场能的性质的物理量:通过电场力做功、电势能的计算,结合功能关系,能量守恒定律等考查电场中能量的转化类问题.|析典例|【例】如图所示,水平绝缘粗糙的轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R=0.4m,在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度E=1.0×104N/C.现有一电荷量q=+1.0×10-4C,质量m=0.1kg的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体恰好能通过半圆形轨道的最高点C,然后落至水平轨道上的D点,取g=10m/s2.试求:(1)带电体运动到圆形轨道B点时对圆形轨道的压力大小;(2)D点到B点的距离xDB;(3)带电体在从P开始运动到落至D点的过程中的最大动能.[解析](1)设带电体恰好通过C点时的速度为vC,依据牛顿第二定律有mg=mvC2R解得vC=2.0m/s设带电体通过B点时的速度为vB,设轨道对带电体的支持力大小为FB,带电体在B点时,根据牛顿第二定律有FB-mg=mvB2R带电体从B运动到C的过程中,依据动能定理有-mg×2R=12mvC2-12mvB2联立解得FB=6.0N根据牛顿第三定律,带电体对轨道的压力FB′=6.0N.(2)设带电体从最高点C落至水平轨道上的D点经历的时间为t,根据运动的分解有2R=12gt2xDB=vCt-12Eqmt2联立解得xDB=0.(3)由P到B带电体做加速运动,故最大速度一定出现在从B经C到D的过程中,在此过程中只有重力和电场力做功,这两个力大小相等,其合力与重力方向成45°夹角斜向右下方,故最大速度必出现在B点右侧对应圆心角为45°处.设带电体的最大动能为Ekm,根据动能定理有qERsin45°-mgR(1-cos45°)=Ekm-12mvB2代入数据解得Ekm≈1.17J.[答案](1)6.0N(2)0(3)1.17J|反思总结|解决力电综合问题的一般思路|练高分|1.(2018届贵州三校联考)在地面附近,存在着一个有界电场,边界MN将空间分成左、右两个区域,在右区域中有水平向左的匀强电场,在右区域中离边界MN某一位置的水平地面上由静止释放一个质量为m的带电滑块(滑块的电荷量始终不变),如图甲所示,滑块运动的vt图象如图乙所示,不计空气阻力,则()A.滑块在MN右边运动的位移大小与在MN左边运动的位移大小相等B.在t=5s时,滑块经过边界MNC.滑块受到的滑动摩擦力与电场力之比为2∶5D.在滑块运动的整个过程中,滑动摩擦力做的功小于电场力做的功解析:选C根据题中速度图线与横轴所围的面积表示位移可知,滑块在MN右边运动的位移大小与在MN左边运动的位移大小不相等,选项A错误;根据题图乙所示速度图象可知,t=2s时滑块越过分界线MN,选项B错误;根据题中速度图象斜率表示加速度可知,在0~2s时间内,滑块加速度大小可表示为a1=v02,在2~5s时间内,滑块加速度大小可表示为a2=v03,设电场力为F,运动过程中所受摩擦力为f,对滑块在MN分界线右侧的运动,由牛顿第二定律,F-f=ma1,对滑块在MN分界线左侧的运动,由牛顿第二定律,f=ma2,联立解得f∶F=2∶5,选项C正确;在滑块运动的整个过程中,滑动摩擦力做的功可表示为Wf=f·2.5v0,电场力做的功可表示为WF=F·v0=2.5f·v0,二者做功相等,选项D错误.2.从地面以v0斜向上抛出一个质量为m的小球,当小球到达最高点时,小球具有的动能与势能之比是9∶16,取地面为重力势能参考面,不计空气阻力.现在此空间加上一个平行于小球平抛平面的水平电场,以相同的初速度抛出带正电荷量为q的原小球,小球到达最高点时的动能与抛出时动能相等.求:(1)无电场时,小球升到最高点的时间;(2)后来加上的电场的场强大小.解析:(1)无电场时,当小球到达最高点时,小球具有的动能与势能之比是9∶16将小球的运动分解为水平方向和竖直方向,则由vy2=2gh,得12mvy2=mgh12mvx2∶12mvy2=9∶16解得初始抛出时:vx∶vy=3∶4所以竖直方向的初速度为vy=45v0竖直方向做匀减速直线运动vy=gt解得t=4v05g.(2)设后来加上的电场场强大小为E,小球到达最高点时的动能与刚抛出时的动能相等,若电场力的方向与小球初速度的水平分量方向相同,则有E1qmt+35v0=v0解得E1=mg2q若电场力的方向与小球初速度的水平分量方向相反,则有E2qmt-35v0=v0解得E2=2mgq.答案:(1)4v05g(2)mg2q或2mgq素养培优提素养、练能力、注重培养板块二等效法巧解带电体在等效场中的运动问题——知识迁移能力的培养1.等效思维法等效思维法是将一个复杂的物理问题,等效为一个熟知的物理模型或问题的方法.对于这类问题,若采用常规方法求解,过程复杂,运算量大.若采用“等效法”求解,则能避开复杂的运算,过程比较简捷.2.方法应用先求出重力与电场力的合力,将这个合力视为一个“
本文标题:2020高考物理一轮总复习 第七章 静电场 能力课 带电粒子(带电体)在电场中运动的综合问题课件 新
链接地址:https://www.777doc.com/doc-8226578 .html