您好,欢迎访问三七文档
第十八章平行四边形18.2特殊的平行四边形18.2.1矩形第2课时矩形的判定-1-矩形的判定同步考点手册P191.在▱ABCD中,对角线AC,BD相交于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的是()A.AB=ADB.OA=OBC.AC=BDD.DC⊥BCA-2-2.下列说法正确的是()A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形的矩形D.对角互补的平行四边形是矩形D-3-3.对于四边形ABCD,给出下列6组条件:①∠A=90°,∠B=∠C=∠D;②∠A=∠B=90°,∠C=∠D;③∠A=∠B=∠C=∠D;④∠A=∠B=∠C=90°;⑤AC=BD;⑥AB∥CD,AD∥BC.其中能得到“四边形ABCD是矩形”的有()A.1组B.2组C.3组D.4组D-4-4.如图所示,在▱ABCD中,E为AD的中点,△CBE是等边三角形.求证:▱ABCD是矩形.-5-证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB=DC,∠D+∠A=180°,∵E是AD边的中点,∴AE=DE,∵△CBE是等边三角形,∴BE=CE,在△ABE和△DCE中,AB=DC,AE=DE,BE=CE,∴△ABE≌△DCE(SSS),∴∠A=∠D,∵∠D+∠A=180°,∴∠D=∠A=90°,∵四边形ABCD是平行四边形,∴▱ABCD是矩形.-6-忽视矩形的判定定理成立的条件,导致方法错误5.怎样用刻度尺检查一个四边形零件是不是矩形?解:先量四边形的两组对边,看是否相等,如相等,再量对角线是否相等,如相等,则它是矩形.-7-6.如图,将平行四边形ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.-8-(1)求证:AC=BE;证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵CE=DC,∴AB=EC,AB∥EC,∴四边形ABEC是平行四边形,∴AC=BE.(2)若∠AFC=2∠D,连接AC,BE.求证:四边形ABEC是矩形.证明:∵四边形ABEC是平行四边形,∴FA=FE,FB=FC,∵四边形ABCD是平行四边形,∴∠ABC=∠D,又∵∠AFC=2∠D,∴∠AFC=2∠ABC,∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形.-9-7.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.-10-(1)线段BD与CD有什么数量关系,并说明理由;解:BD=CD.理由如下:∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,又∵∠AEF=∠DEC,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD.(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.解:当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四边形AFBD是矩形.8.如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,若发光电子与矩形的边碰撞次数经过2020次后,则它与AB边的碰撞次数是_____.674
本文标题:2020春八年级数学下册 第十八章 平行四边形 18.2 特殊的平行四边形 18.2.1 矩形 第2
链接地址:https://www.777doc.com/doc-8230240 .html