您好,欢迎访问三七文档
第2讲用样本估计总体第十一章统计与统计案例1.统计图表(1)频率分布直方图的画法步骤①求极差(即一组数据中________与________的差);②决定_____与_____;③将数据_____;④列_____________;⑤画_________________.最大值最小值组距组数分组频率分布表频率分布直方图(2)频率分布折线图和总体密度曲线①频率分布折线图:连接频率分布直方图中各小长方形上端的_______,就得到频率分布折线图.②总体密度曲线:随着样本容量的增加,作图时____________增加,_______减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.(3)茎叶图的画法步骤第一步:将每个数据分为茎(高位)和叶(低位)两部分;第二步:将最小茎与最大茎之间的数按大小次序排成一列;第三步:将各个数据的叶依次写在其茎的两侧.中点所分组数组距2.样本的数字特征(1)众数:一组数据中___________________的那个数据,叫做这组数据的众数.(2)中位数:把n个数据按大小顺序排列,处于__________位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(3)平均数:把_________________称为a1,a2,…,an这n个数的平均数.出现次数最多最中间a1+a2+…+ann(4)标准差与方差:设一组数据x1,x2,x3,…,xn的平均数为x-,则这组数据的标准差和方差分别是s=1n[(x1-x-)2+(x2-x-)2+…+(xn-x-)2]s2=1n[(x1-x-)2+(x2-x-)2+…+(xn-x-)2]3.与平均数和方差有关的结论(1)若x1,x2,…,xn的平均数为x-,那么mx1+a,mx2+a,…,mxn+a的平均数为mx-+a;(2)数据x1,x2,…,xn与数据x′1=x1+a,x′2=x2+a,…,x′n=xn+a的方差相等,即数据经过平移后方差不变;(3)若x1,x2,…,xn的方差为s2,那么ax1+b,ax2+b,…,axn+b的方差为a2s2;(4)s2=1ni=1n(xi-x-)2=1ni=1nx2i-x-2,即各数平方的平均数减去平均数的平方.判断正误(正确的打“√”,错误的打“×”)(1)一组数据的方差越大,说明这组数据的波动越大.()(2)在频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间内的频率越大.()(3)茎叶图中的数据要按从小到大的顺序写,相同的数据可以只记一次.()(4)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观.()(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数的估计值.()答案:(1)√(2)√(3)×(4)√(5)√(2017·高考全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳解析:选A.根据折线图可知,2014年8月到9月、2014年10月到11月等月接待游客量都是减少,所以A错误.重庆市某年各月的平均气温(℃)数据的茎叶图如图,则这组数据的中位数是()A.19B.20C.21.5D.23解析:选B.由茎叶图可知这组数据由小到大依次为8,9,12,15,18,20,20,23,23,28,31,32,所以中位数为20+202=20.(2019·郑州第一次质量预测)我市某校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15,则该班的学生人数是________.解析:依题意得,成绩低于60分的相应的频率等于(0.005+0.01)×20=0.3,所以该班的学生人数是15÷0.3=50.答案:50甲、乙两人在10天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为________和________.解析:由茎叶图可知甲的平均数为19+18+20+21+23+22+20+31+31+3510=24.乙的平均数为19+17+11+21+24+22+24+30+32+3010=23.答案:2423[典例引领](2017·高考山东卷)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5B.5,5C.3,7D.5,7茎叶图【解析】根据两组数据的中位数相等可得65=60+y,解得y=5,又它们的平均值相等,所以56+62+65+74+(70+x)5=59+61+67+(60+y)+785,解得x=3.故选A.【答案】A茎叶图中的三个关注点(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一.(2)重复出现的数据要重复记录,不能遗漏.(3)给定两组数据的茎叶图,估计数字特征,茎上的数字由小到大排列,一般“重心”下移者平均数较大,数据集中者方差较小.[通关练习]1.(2019·贵州遵义航天高中模拟)某学生在一门功课的22次考试中,所得分数茎叶图如图所示,则此学生该门功课考试分数的极差与中位数之和为()A.117B.118C.118.5D.119.5解析:选B.22次考试中,所得分数最高的为98,最低的为56,所以极差为98-56=42,将分数从小到大排列,中间两数为76,76,所以中位数为76,所以此学生该门功课考试分数的极差与中位数之和为42+76=118.2.为了了解某校教师使用多媒体进行教学的情况,现采用简单随机抽样的方法,从该校400名授课教师中抽取20名,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示,如图所示.据此可估计上学期该校400名教师中,使用多媒体进行教学的次数在[16,30)内的人数为()A.100B.160C.200D.280解析:选B.由茎叶图可知在20名教师中,上学期使用多媒体进行教学的次数在[16,30)内的人数为8,据此可以估计400名教师中,使用多媒体进行教学的次数在[16,30)内的人数为400×820=160.频率分布直方图是高考的热点,选择题、填空题、解答题都有可能出现.难度一般较小.高考对频率分布直方图的考查主要有以下三个命题角度:(1)求样本的频率、频数;(2)求样本的数字特征;(3)与概率结合的问题.频率分布直方图(高频考点)[典例引领]角度一求样本的频率、频数(2016·高考山东卷)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140【解析】由频率分布直方图可知,这200名学生每周的自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,故这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140.故选D.【答案】D角度二求样本的数字特征(2019·云南省11校跨区调研)为了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量(单位:克),按照[27.5,32.5),[32.5,37.5),[37.5,42.5),[42.5,47.5),[47.5,52.5]分为5组,其频率分布直方图如图所示.(1)求图中a的值;(2)估计这种植物果实重量的平均数x-和方差s2(同一组中的数据用该组区间的中点值作代表).【解】(1)组距d=5,由5×(0.02+0.04+0.075+a+0.015)=1得a=0.05.(2)各组中点值和相应的频率依次为中点值3035404550频率0.10.20.3750.250.075x-=30×0.1+35×0.2+40×0.375+45×0.25+50×0.075=40,s2=(-10)2×0.1+(-5)2×0.2+02×0.375+52×0.25+102×0.075=28.75.角度三与概率结合的问题(2018·高考全国卷Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)[0.6,0.7)频数13249265使用了节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)频数151310165(1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图;(2)估计该家庭使用节水龙头后,日用水量小于0.35m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同组中的数据以这组数据所在区间中点的值作代表.)【解】(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48.因此该家庭使用节水龙头后日用水量小于0.35m3的概率的估计值为0.48.(3)该家庭未使用节水龙头50天日用水量的平均数为x1-=150(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.该家庭使用了节水龙头后50天日用水量的平均数为x2-=150(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m3).频率、频数、样本容量的计算方法(1)频率组距×组距=频率.(2)频数样本容量=频率,频数频率=样本容量,样本容量×频率=频数.[提醒]制作好频率分布表后,可以利用各组的频率之和是否为1来检验该表是否正确.[通关练习]1.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的25,且样本容量为140,则中间一组的频数为()A.28B.40C.56D.60解析:选B.设中间一组的频数为x,因为中间一个小长方形的面积等于其他8个长方形的面积和的25,所以其他8组的频数和为52x,由x+52x=140,解得x=40.2.(2019·武汉市武昌区调研考试)我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解全市居民用水量的分布情况,通过抽样,获得了100位居民某年的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求频率分布直方图中a的值;(2)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.解:(1)由频率分布直方图,可得(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5=1,解得a=0.30.(2)由频率分布直方图知,100位居民每人月均用水量不低于3吨的频率为(0.12
本文标题:2020版高考数学大一轮复习 第十一章 统计与统计案例 第2讲 用样本估计总体课件 理 新人教A版
链接地址:https://www.777doc.com/doc-8236112 .html