您好,欢迎访问三七文档
知识点考纲下载空间几何体的结构及三视图和直观图认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).第八章立体几何知识点考纲下载空间几何体的表面积与体积了解球、棱柱、棱锥、台的表面积和体积的计算公式.空间点、直线、平面之间的位置关系理解空间直线、平面位置关系的定义.了解可以作为推理依据的公理和定理.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.空间中的平行关系以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.空间中的垂直关系以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.第八章立体几何第1讲空间几何体的结构特征及三视图和直观图第八章立体几何1.空间几何体的结构特征(1)多面体的结构特征名称棱柱棱锥棱台图形底面互相_____且_____多边形互相_____平行相等平行名称棱柱棱锥棱台侧棱____________相交于_____,但不一定相等延长线交于_____侧面形状___________________________平行且相等一点一点平行四边形三角形梯形(2)旋转体的结构特征名称圆柱圆锥圆台球图形母线互相平行且相等,_____于底面相交于_____延长线交于_____垂直一点一点名称圆柱圆锥圆台球轴截面全等的_____全等的____________________全等的_______________侧面展开图_______________矩形等腰三角形等腰梯形圆矩形扇形扇环2.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为_______________,z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中____________________.45°(或135°)变为原来的一半3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的_____方、_____方、_____方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:__________,__________,__________.②画法规则:_____一样高,_____一样长,_____一样宽;看到的线画_____线,看不到的线画_____线.正前正左正上长对正高平齐宽相等正侧正俯侧俯实虚[注意](1)画三视图时,能看见的线用实线表示,不能看见的线用虚线表示.(2)同一物体,若放置的位置不同,则所得的三视图可能不同.常用知识拓展1.特殊的四棱柱四棱柱――――→底面为平行四边形平行六面体――――→侧棱垂直于底面直平行六面体――――→底面为矩形长方体――――→底面边长相等正四棱柱―――――→侧棱与底面边长相等正方体上述四棱柱有以下集合关系:{正方体}{正四棱柱}{长方体}{直平行六面体}{平行六面体}{四棱柱}.2.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的正视图和侧视图均为全等的等腰三角形.(3)水平放置的圆台的正视图和侧视图均为全等的等腰梯形.(4)水平放置的圆柱的正视图和侧视图均为全等的矩形.判断正误(正确的打“√”,错误的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.()(4)正方体、球、圆锥各自的三视图中,三视图均相同.()(5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.()(6)菱形的直观图仍是菱形.()答案:(1)×(2)×(3)×(4)×(5)×(6)×关于棱柱的下列说法错误的是()A.棱柱的侧棱都相等B.棱柱的侧棱都平行C.棱柱的两底面是全等的多边形D.棱柱的侧面是全等的平行四边形解析:选D.根据棱柱的结构特征可知选D.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析:选B.根据选项A、B、C、D中的直观图,画出其三视图,只有B项正确.(教材习题改编)若某几何体的三视图如图所示,则该几何体为________.答案:四棱柱与圆柱组合而成的简单组合体在直观图(如图所示)中,四边形O′A′B′C′为菱形且边长为2cm,则在平面直角坐标系xOy中,四边形ABCO为________,面积为________cm2.解析:由斜二测画法的特点,知该平面图形的直观图的原图,即在平面直角坐标系xOy中,四边形ABCO是一个长为4cm,宽为2cm的矩形,所以四边形ABCO的面积为8cm2.答案:矩形8(1)下列结论正确的是()A.侧面都是等腰三角形的三棱锥是正三棱锥B.六条棱长均相等的四面体是正四面体C.有两个侧面是矩形的棱柱是直棱柱D.用一个平面去截圆锥,底面与截面之间的部分叫圆台空间几何体的结构特征(师生共研)(2)以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面.其中正确命题的个数为()A.0B.1C.2D.3【解析】(1)底面是等边三角形,且各侧面三角形全等,这样的三棱锥才是正三棱锥,A错;斜四棱柱也有可能两个侧面是矩形,所以C错;截面平行于底面时,底面与截面之间的部分才叫圆台,D错.(2)命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥;命题②错,因为这条腰必须是垂直于两底的腰;命题③对.【答案】(1)B(2)B空间几何体概念辨析问题的常用方法1.下列结论中错误的是()A.由五个面围成的多面体只能是三棱柱B.正棱台的对角面一定是等腰梯形C.圆柱侧面上的直线段都是圆柱的母线D.各个面都是正方形的四棱柱一定是正方体解析:选A.由五个面围成的多面体可以是四棱锥,所以A选项错误.B,C,D说法均正确.2.下列说法正确的是()A.各个面都是三角形的几何体是三棱锥B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D.如图知,A不正确,两个平行平面与底面不平行时,截得的几何体不是旋转体,故B不正确.侧棱长与底面多边形的边长相等的棱椎一定不是六棱锥,故C错误,由定义知,D正确.角度一由空间几何体的直观图识别三视图(2018·高考全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()空间几何体的三视图(多维探究)【解析】由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.【答案】A角度二由空间几何体的三视图还原直观图(2018·高考全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217B.25C.3D.2【解析】由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4,则从M到N的路径中,最短路径的长度为MS2+SN2=22+42=25.故选B.【答案】B角度三已知几何体的某些视图,判断其他视图已知一三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()【解析】由已知条件得直观图如图所示,正视图是直角三角形,中间的线是看不见的线PA形成的投影,应为虚线.故选C.【答案】C三视图还原的三种方法(1)熟悉常见几何体的三视图,如两个矩形、一个圆形为圆柱,三个三角形为三棱锥等.(2)直接还原.将几何体放在长方体或正方体中,一般从俯视图入手,找几何体顶点的位置,再确定实虚线.(3)将几何体放入柱体或锥体中,通过合理切割得到相应几何体.1.(2019·福州市第一学期抽测)如图,为一圆柱切削后的几何体及其正视图,则相应的侧视图可以是()解析:选B.由题意,根据切削后的几何体及其正视图,可得相应的侧视图的切口为椭圆,故选B.2.(2019·唐山市五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为()解析:选A.由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A,故选A.3.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体,其中DD1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是()解析:选C.根据该几何体的直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B,D;而在三视图中看不见的棱用虚线表示,故排除A.(1)已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为()A.34a2B.38a2C.68a2D.616a2空间几何体的直观图(师生共研)(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm,O′C′=2cm,则原图形是()A.正方形B.矩形C.菱形D.一般的平行四边形【解析】(1)如图①②所示的实际图形和直观图,由②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于D′,则C′D′=22O′C′=68a,所以S△A′B′C′=12A′B′·C′D′=12×a×68a=616a2.故选D.(2)如图,在原图形OABC中,应有OD=2O′D′=2×22=42(cm),CD=C′D′=2cm.所以OC=OD2+CD2=(42)2+22=6(cm),所以OA=OC,故四边形OABC是菱形,故选C.【答案】(1)D(2)C平面图形直观图与原图形面积间的关系对于几何体的直观图,除掌握斜二测画法外,记住原图形面积S与直观图面积S′之间的关系S′=24S,能更快捷地进行相关问题的计算.如图,正方形OABC的边长为1cm,它是水平放置的一个平面图形的直观图,则原图形的周长是________cm.解析:由题意知正方形OABC的边长为1,它是水平放置的一个平面图形的直观图,所以OB=2cm,对应原图形平行四边形的高为22cm,所以原图形中,OA=BC=1cm,AB=OC=(22)2+12=3cm,故原图形的周长为2×(1+3)=8cm.答案:8
本文标题:2020版高考数学大一轮复习 第八章 立体几何 1 第1讲 空间几何体的结构特征及三视图和直观图课件
链接地址:https://www.777doc.com/doc-8236451 .html