您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2019秋九年级数学下册 第27章 圆小结与复习教学课件(新版)华东师大版
第27章圆小结与复习要点梳理考点讲练课堂小结课后作业·一.与圆有关的概念1.圆:平面内到定点的距离等于定长的所有点组成的图形.2.弦:连结圆上任意两点的线段.3.直径:经过圆心的弦是圆的直径,直径是最长的弦.4.劣弧:小于半圆周的圆弧.5.优弧:大于半圆周的圆弧.要点梳理6.等弧:在同圆或等圆中,能够互相重合的弧.7.圆心角:顶点在圆心,角的两边与圆相交.8.圆周角:顶点在圆上,角的两边与圆相交.[注意](1)确定圆的要素:圆心决定位置,半径决定大小.(2)不在同一条直线上的三个点确定一个圆.·9.外接圆、内接正多边形:将一个圆n(n≥3)等分,依次连接各等分点所得到的多边形叫作这个圆的内接正多边形,这个圆是这个正多边形的外接圆.10.三角形的外接圆外心:三角形的外接圆的圆心叫做这个这个三角形的外心.[注意](1)三角形的外心是三角形三条边的垂直平分线的交点.(2)一个三角形的外接圆是唯一的.11.三角形的内切圆内心:三角形的内切圆的圆心叫做这个这个三角形的内心.[注意](1)三角形的内心是三角形三条角平分线的交点.(2)一个三角形的内切圆是唯一的.12.正多边形的相关概念(1)中心:正多变形外接圆和内切圆有公共的圆心,称其为正多边形的中心.(2)半径:外接圆的半径叫做正多边形的半径.(3)边心距:中心到正多边形一边的距离叫做正多边形的边心距.(4)中心角:正多边形每一条边对应所对的外接圆的圆心角都相等,叫做正多边形的中心角.二、与圆有关的位置关系1.点与圆的位置关系判断点与圆的位置关系可由点到圆心的距离d与圆的半径r比较得到.设☉O的半径是r,点P到圆心的距离为d,则有点P在圆内;d<r点P在圆上;d=r点P在圆外.d>r[注意]点与圆的位置关系可以转化为点到圆心的距离与半径之间的关系;反过来,也可以通过这种数量关系判断点与圆的位置关系.2.直线与圆的位置关系设r为圆的半径,d为圆心到直线的距离直线与圆的位置关系图形d与r的关系公共点个数公共点名称直线名称2个交点割线1个切点切线0个相离相切相交d>rd=rd<r三、圆的基本性质1.圆的对称性圆是轴对称图形,它的任意一条_______所在的直线都是它的对称轴.直径2.有关圆心角、弧、弦的性质.(1)在同圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦也相等.(2)在同圆或等圆中,如果两个圆心角、两条弧和两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.圆心角相等弧相等弦相等(2)垂径定理的推论:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直平分这条弧所对的弦.三、有关定理及其推论1.垂径定理(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的.[注意]①条件中的“弦”可以是直径;②结论中的“平分弧”指平分弦所对的劣弧、优弧.两条弧2.圆周角定理(1)圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.(3)推论2:90°的圆周角所对的弦是直径.[注意]“同弧”指“在一个圆中的同一段弧”;“等弧”指“在同圆或等圆中相等的弧”;“同弧或等弧”不能改为“同弦或等弦”.(4)推论3:圆的内接四边形的对角互补.(2)推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对弧相等.3.与切线相关的定理(1)判定定理:经过圆的半径的外端且垂直于这条半径的直线是圆的切线.(2)性质定理:圆的切线垂直于经过切点的半径.(3)切线长定理:经过圆外一点所画的圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.四、圆中的计算问题1.弧长公式半径为R的圆中,n°圆心角所对的弧长l=________.180nR2.扇形面积公式半径为R,圆心角为n°的扇形面积S=____________.2360nR12lR或3.弓形面积公式OO弓形的面积=扇形的面积±三角形的面积(3)圆锥的侧面积为.[注意]圆锥的侧面展开图的形状是扇形,它的半径等于圆锥的母线长,它的弧长是圆锥底面圆的周长.(4)圆锥的全面积为.lr2lrr4.圆锥的侧面积(1)圆锥的侧面展开图是一个.(2)如果圆锥母线长为l,底面圆的半径为r,那么这个扇形的半径为,扇形的弧长为.扇形l2r5.圆内接正多边形的计算(1)正n边形的中心角为360n(2)正n边形的边长a,半径R,边心距r之间的关系222().2aRr(3)边长a,边心距r的正n边形的面积为11.22Snarlr其中l为正n边形的周长.考点一圆周角定理例1在图中,BC是☉O的直径,AD⊥BC,若∠D=36°,则∠BAD的度数是()A.72°B.54°C.45°D.36°ABCDB135°1.如图a,四边形ABCD为☉O的内接正方形,点P为劣弧BC上的任意一点(不与B,C重合),则∠BPC的度数是.CDBAPO图a针对训练2.如图b,线段AB是直径,点D是☉O上一点,∠CDB=20°,过点C作☉O的切线交AB的延长线于点E,则∠E等于.OCABED图b50°考点二垂径定理例2工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为mm.8mmAB8CDO解析设圆心为O,连接AO,作出过点O的弓形高CD,垂足为D,可知AO=5mm,OD=3mm,利用勾股定理进行计算,AD=4mm,所以AB=8mm.2AOBCEF图a3.如图a,点C是扇形OAB上的AB的任意一点,OA=2,连接AC,BC,过点O作OE⊥AC,OF⊥BC,垂足分别为E,F,连接EF,则EF的长度等于.(针对训练3ABCDPO图bD’P4.如图b,AB是⊙O的直径,且AB=2,C,D是同一半圆上的两点,并且AC与BD的度数分别是96°和36°,动点P是AB上的任意一点,则PC+PD的最小值是.((考点三与圆有关的位置关系B北60°30°AC例3如图,已知灯塔A的周围7海里的范围内有暗礁,一艘鱼轮在B处测得灯塔A在北偏东600的方向,向东航行8海里到达C处后,又测得该灯塔在北偏东300的方向,如果渔轮不改变航向,继续向东航行,有没有触礁的危险?请通过计算说明理由.(参考数据=1.732)3解析:灯塔A的周围7海里都是暗礁,即表示以A为圆心,7海里为半径的圆中,都是暗礁.渔轮是否会触礁,关键是看渔轮与圆心A之间的距离d的大小关系.B北60°30°ACB北60°30°ACD解:如图,作AD垂直于BC于D,根据题意,得BC=8.设AD为x.∵∠ABC=30°,∴AB=2x.BD=x.∵∠ACD=90°-30°=60°,∴AD=CD×tan60°,CD=.BC=BD-CD==8.解得x=333x233x4341.7326.9287.<即渔船继续往东行驶,有触礁的危险.5.☉O的半径为R,圆心到点A的距离为d,且R、d分别是方程x2-6x+8=0的两根,则点A与☉O的位置关系是()A.点A在☉O内部B.点A在☉O上C.点A在☉O外部D.点A不在☉O上解析:此题需先计算出一元二次方程x2-6x+8=0的两个根,然后再根据R与d的之间的关系判断出点A与☉O的关系.D针对训练例4如图,O为正方形对角线上一点,以点O为圆心,OA长为半径的☉O与BC相切于点M.(1)求证:CD与☉O相切;ABCDOM(1)证明:过点O作ON⊥CD于N.连接OM∵BC与☉O相切于点M,∴∠OMC=90°,∵四边形ABCD是正方形,点O在AC上.∴AC是∠BCD的角平分线,∴ON=OM,∴CD与☉O相切.NABCDOM(2)解:∵正方形ABCD的边长为1,AC=.设☉O的半径为r,则OC=.又易知△OMC是等腰直角三角形,∴OC=因此有,解得.22r2r22rr22r(2)若正方形ABCD的边长为1,求☉O的半径.方法归纳(1)证切线时添加辅助线的解题方法有两种:①有公共点,连半径,证垂直;②无公共点,作垂直,证半径;有切线时添加辅助线的解题方法是:见切点,连半径,得垂直;(2)设未知数,通常利用勾股定理建立方程.6.(多解题)如图,直线AB,CD相交于点O,∠AOD=30°,半径为1cm的☉P的圆心在射线OA上,且与点O的距离为6cm,如果☉P以1cm/s的速度沿由A向B的方向移动,那么秒钟后☉P与直线CD相切.4或8解析:根本题应分为两种情况:(1)☉P在直线AB下面与直线CD相切;(2)☉P在直线AB上面与直线CD相切.针对训练ABDCPP2P1E例5已知:如图,PA,PB是⊙O的切线,A、B为切点,过上的一点C作⊙O的切线,交PA于D,交PB于E.(1)若∠P=70°,求∠DOE的度数;AB解:(1)连接OA、OB、OC,∵⊙O分别切PA、PB、DE于点A、B、C,∴OA⊥PA,OB⊥PB,OC⊥DE,AD=CD,BE=CE,∴OD平分∠AOC,OE平分∠BOC.∴∠DOE=∠AOB.∵∠P+∠AOB=180°,∠P=70°,∴∠DOE=55°.12(2)∵⊙O分别切PA、PB、DE于A、B、C,∴AD=CD,BE=CE.∴△PDE的周长=PD+PE+DE=PD+AD+BE+PE=2PA=8(cm)(2)若PA=4cm,求△PDE的周长.例6如图,四边形OABC为菱形,点B、C在以点O为圆心的圆上,OA=1,∠AOC=120°,∠1=∠2,则扇形OEF的面积?解:∵四边形OABC为菱形∴OC=OA=1∵∠AOC=120°,∠1=∠2∴∠FOE=120°又∵点C在以点O为圆心的圆上21201=3603S扇形OEFpp创\=考点四圆中的计算问题7.(1)一条弧所对的圆心角为135°,弧长等于半径为5cm的圆的周长的3倍,则这条弧的半径为.(2)若一个正六边形的周长为24,则该正六边形的面积为______.40cm243针对训练8.如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于_______.23p例7如图所示,在正方形ABCD内有一条折线段,其中AE⊥EF,EF⊥FC,已知AE=6,EF=8,FC=10,求图中阴影部分的面积.解:将线段FC平移到直线AE上,此时点F与点E重合,点C到达点C'的位置.连接AC,如图所示.根据平移的方法可知,四边形EFCC'是矩形.∴AC'=AE+EC'=AE+FC=16,CC'=EF=8.在Rt△AC'C中,得2222AC=AC'+CC'=16+8=85∴正方形ABCD外接圆的半径为45∴正方形ABCD的边长为ACAB=410222=45410=80160S阴影()()当图中出现圆的直径时,一般方法是作出直径所对的圆周角,从而利用“直径所对的圆周角等于”构造出直角三角形,为进一步利用勾股定理或锐角三角函数提供了条件.方法总结909.如图,正六边形ABCDEF内接于半径为5的⊙O,四边形EFGH是正方形.⑴求正方形EFGH的面积;解:⑴∵正六边形的边长与其半径相等,∴EF=OF=5.∵四边形EFGH是正方形,∴FG=EF=5,∴正方形EFGH的面积是25.针对训练⑵∵正六边形的边长与其半径相等,∴∠OFE=600.∴正方形的内角是900,∴∠OFG=∠OFE+∠EFG=600+900=1500.由⑴得OF=FG,∴∠OGF=(1800-∠OFG)=(1800-1500)=150.1212⑵连接OF、OG,求∠OGF的度数.考点五与圆有关的作图·abcda例8如何解决“破镜重圆”的问题:O·例9如何作圆内接正五边形怎么作?·OE72°BADC(1)用量角器作72°的中心角,得圆的五等分点;(2)依次连接各等分点,得圆的内接正五边形.考点六圆的综合[解析]连接BD,则在Rt△BCD中,BE=DE,利用角的互余证明∠C=∠EDC.例10如图,在Rt△ABC中,∠ABC=90°,以AB为直径的☉O交AC于点D,过点D的切线交BC于E.(1)求证:BC=2DE.解:(1)证明:连接BD,∵AB为直径,∠ABC=90°,∴BE切☉O
本文标题:2019秋九年级数学下册 第27章 圆小结与复习教学课件(新版)华东师大版
链接地址:https://www.777doc.com/doc-8245346 .html