您好,欢迎访问三七文档
知识点事件的关系与运算定义表示法图示事件的关系包含关系一般地,对于事件A与事件B,如果事件A发生,则事件B________,这时称事件B包含事件A(或称事件A包含于事件B).特别地,如果事件B包含事件A,事件A也包含事件B,即B⊇A且A⊇B,则称事件A与事件B相等,记作A=B.______(或______)一定发生B⊇AA⊆B事件互斥若A∩B为____________,则称事件A与事件B互斥若________,则A与B互斥事件的关系事件对立若A∩B为____,A∪B为________,那么称事件A与事件B互为对立事件若A∩B=∅,且A∪B=U,则A与B对立不可能事件A∩B=∅∅必然事件并事件若某事件发生当且仅当______________________,则称此事件为事件A与事件B的并事件(或和事件)______(或______)事件的运算交事件若某事件发生当且仅当______________________,则称此事件为事件A与事件B的交事件(或积事件)______(或____)事件A发生或事件B发生A∪BA+B事件A发生且事件B发生A∩BAB状元随笔互斥事件与对立事件的区别与联系两个事件A与B是互斥事件,有如下三种情况:(1)若事件A发生,则事件B就不发生;(2)若事件B发生,则事件A就不发生;(3)事件A、B都不发生.两个事件A、B是对立事件,仅有前两种情况.因此,互斥未必对立,但对立一定互斥.[教材解难]事件的关系或运算的含义事件的关系或运算含义符号表示包含A发生导致B发生A⊆B并事件(和事件)A与B至少一个发生A∪B或A+B交事件(积事件)A与B同时发生A∩B或AB互斥(互不相容)A与B不能同时发生A∩B=∅互为对立A与B有且仅有一个发生A∩B=∅,A∪B=Ω类似地,我们可以定义多个事件的和事件以及积事件.例如,对于三个事件A,B,C,A∪B∪C(或A+B+C)发生当且仅当A,B,C中至少一个发生,A∩B∩C(或ABC)发生当且仅当A,B,C同时发生,等等.[基础自测]1.对同一事件来说,若事件A是必然事件,事件B是不可能事件,则事件A与事件B的关系是()A.互斥不对立B.对立不互斥C.互斥且对立D.不互斥、不对立解析:必然事件与不可能事件不可能同时发生,但必有一个发生,故事件A与事件B的关系是互斥且对立.答案:C2.抽查10件产品,记事件A为“至少有2件次品”,则A的对立事件为()A.至多有2件次品B.至多有1件次品C.至多有2件正品D.至少有2件正品解析:至少有2件次品包含2,3,4,5,6,7,8,9,10件次品,共9种结果,故它的对立事件为含有1或0件次品,即至多有1件次品.答案:B3.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品有次品,但不全是次品”,则下列结论中错误的是()A.A与C互斥B.B与C互斥C.任何两个都互斥D.任何两个都不互斥解析:由题意知事件A、B、C两两不可能同时发生,因此两两互斥.答案:D4.某人打靶两次,事件A为只有一次中靶,事件B为二次中靶,则A+B________.解析:A+B为并事件即至少有一次中靶.答案:至少一次中靶题型一事件的关系判断[经典例题]例1某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件:(1)“恰有1名男生”与“恰有2名男生”;(2)“至少有1名男生”与“全是男生”;(3)“至少有1名男生”与“全是女生”;(4)“至少有1名男生”与“至少有1名女生”.【解析】从3名男生和2名女生中任选2人有如下三种结果:2名男生,2名女生,1男1女.(1)“恰有1名男生”指1男1女,与“恰有2名男生”不能同时发生,它们是互斥事件;但是当选取的结果是2名女生时,该两事件都不发生,所以它们不是对立事件.(2)“至少有1名男生”包括2名男生和1男1女两种结果,与事件“全是男生”可能同时发生,所以它们不是互斥事件.(3)“至少有1名男生”与“全是女生”不可能同时发生,所以它们互斥,由于它们必有一个发生,所以它们是对立事件.(4)“至少有1名女生”包括1男1女与2名女生两种结果,当选出的是1男1女时,“至少有1名男生”与“至少有1名女生”同时发生,所以它们不是互斥事件.判断的依据是互斥事件、对立事件的定义.方法归纳要判断两个事件是不是互斥事件,只需要找出各个事件包含的所有结果,看它们之间能不能同时发生,在互斥的前提下,看两个事件中是否必有一个发生,可判断是否为对立事件.注意辨析“至少”“至多”等关键词语的含义,知道它们对事件结果的影响.必要时可以把具体的事件列举出来,更易于分辨.跟踪训练1从一批产品中取出三件产品,设A表示“三件产品全不是次品”,B表示“三件产品全是次品”,C表示“三件产品至少有一件是次品”,则下列结论正确的是()A.A与C互斥B.任何两个均互斥C.B与C互斥D.任何两个均不互斥解析:由题意可知,事件A与事件C不可能同时发生,故A与C互斥,选A.答案:A先弄清每个事件的情况,再判断两者之间的关系.题型二事件的运算[教材P231例5]例2如图,由甲、乙两个元件组成一个并联电路,每个元件可能正常或失效.设事件A=“甲元件正常”,B=“乙元件正常”.(1)写出表示两个元件工作状态的样本空间;(2)用集合的形式表示事件A,B以及它们的对立事件;(3)用集合的形式表示事件A∪B和事件A∩B,并说明它们的含义及关系.【解析】(1)用x1,x2分别表示甲、乙两个元件的状态,则可以用(x1,x2)表示这个并联电路的状态.以1表示元件正常,0表示元件失效,则样本空间为Ω={(0,0),(0,1),(1,0),(1,1)}.(2)根据题意,可得A={(1,0),(1,1)},B={(0,1),(1,1)},A={(0,0),(0,1)},B={(0,0),(1,0)}.(3)A∪B={(0,1),(1,0),(1,1)},A∩B={(0,0)};A∪B表示电路工作正常,A∩B表示电路工作不正常;A∪B和A∩B互为对立事件.状元随笔注意到试验由甲、乙两个元件的状态组成,所以可以用数组(x1,x2)表示样本点.这样,确定事件A,B所包含的样本点时,不仅要考虑甲元件的状态,还要考虑乙元件的状态.教材反思事件间的运算方法(1)利用事件间运算的定义,列出同一条件下的试验所有可能出现的结果,分析并利用这些结果进行事件间的运算.(2)利用Venn图,借助集合间运算的思想,分析同一条件下的试验所有可能出现的结果,把这些结果在图中列出,进行运算.跟踪训练2在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点},事件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5},事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G={出现的点数为奇数},请根据上述定义的事件,回答下列问题:(1)请举出符合包含关系、相等关系的事件;(2)利用和事件的定义,判断上述哪些事件是和事件.解析:(1)若事件C1,C2,C3,C4发生,则事件D3必发生,所以C1⊆D3,C2⊆D3,C3⊆D3,C4⊆D3.同理可得,事件D2包含事件C4,C5,C6;事件E包含事件C1,C2,C3,C4,C5,C6;事件F包含事件C2,C4,C6;事件G包含事件C1,C3,C5.易知事件C1与事件D1相等,即C1=D1.(2)因为事件D2={出现的点数大于3}={出现4点或出现5点或出现6点},所以D2=C4∪C5∪C6(或D2=C4+C5+C6).同理可得,D3=C1+C2+C3+C4,E=C1+C2+C3+C4+C5+C6,F=C2+C4+C6,G=C1+C3+C5.故事件D2,D3,E,F,G为和事件.
本文标题:2019-2020学年新教材高中数学 第十章 概率 10.1.2 事件的关系和运算课件 新人教A版必
链接地址:https://www.777doc.com/doc-8263828 .html