您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 数学建模(航空公司的预定票策略)
数学建模竞赛承诺书我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们参赛选择的题号是(从A/B中选择一项填写):B我们的队号为:11参赛队员:1.电子0903徐路源2.数学0901王璐璐3.数学0901张乐孝指导教师或指导教师组负责人:数模组日期:2010年8月10日评阅编号(由评阅老师评阅前进行编号):.数学建模竞赛编号专用页评阅编号:评阅记录:评阅人评分备注1预测机票价格和预定数量限额最优问题摘要本文所要讨论的问题可以归结为一个趋势拟合和基于二项分布求最优决策的问题。建立了两个模型:分别用来预测机票的未来价格和求机票的预定限额。首先我们根据所给的2005年10月~2010年3月期间,每月经济舱机票平均价格(单位:元)数据,通过Matlab软件用函数去拟合,所得函数即为机票预订价格的数学模型。可表示为:f(x)=a1*exp(-((x-b1)/c1)^2)+a2*exp(-((x-b2)/c2)^2)+a3*exp(-((x-b3)/c3)^2)+a4*exp(-((x-b4)/c4)^2)+a5*exp(-((x-b5)/c5)^2)+a6*exp(-((x-b6)/c6)^2)但在预测中发现,由模型所得参考价格不合实际。单方面拟合出的模型并不具有实际价值。之后我们采用趋势外推法中最小二乘法的周期波动模型来解题。通过与实际价格的比较,发现其误差较小且置信度较高。所以我们得到的机票预定价格的数学模型即为)122sin(*4632.0)122cos(*9938.0)122sin(0239.58)122cos(*9355.492690.73877.638~xxxxxxytππππ价格随时间呈周期性变化,每过一个周期价格略有上升。这与人民经济生活水平提高分不开的。最后,我们搜集了一些数据来佐证我们模型的价值。根据实际情况,制定合理的预定策略需从经济利益最大化和社会声誉最好两方面来考虑。社会声誉可以用定了票来登机因飞机满员而不能起飞的乘客不超过某一给定值来衡量。则这个问题可化为经济利益最大化为单目标来求解。我们假设每位乘客不按时前来登机的概率为p,是否前来登机是相互独立的,则不按时前来登机的乘客数服从二项分布。又因为订票需付一定量的定金,且在飞机起飞前48小时内取消预订会没收全部订金。对此,我们分情况讨论。由概率分布知识可得利润S关于预定量限额M的函数为由利润最大化,利用Matlab软件求出M的最优解,通过检验和灵敏度分析,由模型得出的机票预订限额置信度较高。查阅资料得,此限额较符合实际情况。最后,我们根据我们建立的模型对其进行优化。由实际可能出现的情况增设某类旅客(学生、旅游者)的减价票,规定迟到则机票作废。在此基础上再建立一个模型。分别求此时飞机的参考价格和预定限额。关键字:曲线拟合、趋势外推、周期波动、概率分布、利润最大2一、问题重述航空公司对机票一般采取预定策略。客户可以通过电话或互联网预定,这种预定具有很大的不确定性,客户很可能由于各种原因取消预定。航空公司为了争取最大利润,一方面要争取客户,另一方面要降低因客户取消预定遭受的损失。为此,航空公司采用一些措施。首先,要求客户提供信用卡号,预付一定数量的定金。如果客户在飞机起飞前48小时内取消预定,定金将如数退还,否则定金将被没收。其次,航空公司采用变动价格,根据市场需求情况调整机票价格,一般来说旺季机票价格比较高,淡季价格略低。(1)建立机票预定价格的数学模型,并对以下实例作分析。表1给出了某某航空公司某条航线2005年10月~2010年3月期间,每月经济舱机票平均价格(单位:元),用模型说明价格变动的规律,并据此估计未来一年内的经济舱机票的参考价格。收集更多的数据来佐证模型的价值(要求注明出处)。(2)在旺季,航空公司往往可以预定出超过实际座位数的机票数,以减低客户取消预定时航空公司的损失。但这样做可能会带来新的风险,万一届时有超出座位数的客户出现,航空公司要通过升级机票档次或赔款来解决纠纷,为此航空公司还会承担信誉风险.某条航线就一中机型,有头等舱20座,经济舱300座,每天一班航班。为该航线制定合理的预定策略,并论证理由。表1某航空公司某条航线2005年10月~2010年3月经济舱月平均价格(单位:元)时间价格时间价格时间价格2005.106562007.048022008.1010682005.115262007.058782008.119962005.125022007.067942008.128042006.014822007.079262009.017942006.024982007.0810182009.028322006.036322007.099482009.039022006.046882007.1010162009.049722006.057202007.119162009.0510142006.066402007.128242009.069162006.076882008.017382009.079862006.087682008.028062009.0811242006.07362008.08722009.094839392006.108022008.048942009.1010562006.117262008.059662009.118722006.126722008.068782009.127962007.017322008.0710282010.018842007.026622008.0811002010.028082007.037802008.099782010.03856二、背景航空公司订座的特点是:旅客可以在飞机起飞前一百多天里向购票处或航空公司订票,由于离飞机起飞时间较长,以及旅客行为的不确定性,往往航空公司会售出超过实际座位数的票数,即超售。在订座决策中,航空公司面临2种风险:空座风险和超售风险,以航班客座容量为临界点,如果超售的结果(即实际到达机场的已预定座位的旅客人数)少于航班容量,会造成座位剩余,这就是空座风险;如果决策结果多于航班容量,造成有些旅客被拒绝登机,从而带来超售风险,合理的超售可以减少空位损失,但要确定合理的超售数额,却是十分困难的。超售是航空公司收益管理的一项重要内容,这是解决所谓的NoShow问题,提高航空公司效益的重要技术手段,同时也有许多理论问题甚至法律问题需要研究。在实际航运中,航空公司发现经常发生已购票的乘客没有乘机(叫做NoShow),使得一些座位空着虚飞,而一些想旅行的和一些有急事临时到达机场(叫做CoShow)的旅客却因购不到票而不能成行,这不仅浪费了航空公司的生产资源,同时也浪费了社会资源。根据对历史销售和离港数据进行分析,可以预测旅客的NoShow率和CoShow率,然后确定超售率进行机票销售。这样做不但可以充分利用热线航班的座位,提高航空公司的收益,同时也使得其他想乘机旅行人员能够成行,可以说是各方都受益的好事。德国汉莎航空公司在超售方面所做的工作非常出色,每年能为公司多创造5%的收益。因此对超售的研究一直为航空公司所重视。但超售预测不可能十分准确,因此可能发生所谓的DB(DeniedBoarding)问题,即实NoShow率低于CoShow率时,便发生了已购票并来乘机的旅客上不了飞机的问题。这常常引起旅客的不满甚至航空公司与旅客的冲突,航空公司采取补偿DB旅客以化解矛盾的做法,但这样的补偿常常是机票价格的两倍以上。发生DB,航空公司的成本迅速上升,这也是航空公司不愿意看到的。因此超售是一把双刃剑,如何解决好NoShow率和DB这一对矛盾,一直是航空公司和学术界都十分关心的问题。目前研究的较多的是机票超售模型是静态的。对于一个航班从开始销售之日到飞机起飞时,超售的数量保持不变。这样将完全忽略机票实际销售情况。超售实际上完全溶4于机票销售过程中。在机票销售过程中,航空公司的订座系统一面接受旅客的订票,一面接受旅客的取消订票或是改签其他航班。显然机票的预定速度应大大超过取消速率,在飞机起飞前某时刻将达到或接近飞机的容量,此时航空公司就将面临超售问题。一般来说,航空公司可以控制订票的流量,当已定机票超过理想的数量时,就不再接受订票的请求。但是由于订票需求的不确定性,目前被拒绝的需求未来不再出现,而未来的取消还继续发生,则到飞机起飞时将产生空座,造成航班收益下降。因此机票的超售是一个动态的决策过程。这一过程依赖于当前的销售状态,未来的需求分布,机票取消分布和起飞时的NO-SHOW率、三、符号说明r飞行费用(为常数)n1飞机头等舱容量(为常数)n2飞机经济舱容量(为常数)g1头等舱机票价格(为常数)g2经济舱机票价格(为常数))(111nmm头等舱预定票数量的限额(为常数))(222nmm经济舱预定票数量的限额(为常数)p每位乘客没来登机且未在48小时之前取消订票的概率k1头等舱中定了票没有登机的乘客k2经济舱中定了票没有登机的乘客b1每位头等舱被挤掉者获得的赔偿金(为常数)5b2每位经济舱被挤掉者获得的赔偿金(为常数)S平均利润l机票订金占机票价格的比重X月份,初始值为x=1,四、模型假设1、各位乘客是否按时前来登机是相互独立的(这适用于单独行动的商人、游客)。2、每趟飞机预定票数量都大于飞机的实际座位数。3、飞行费用与乘客人数无关,为一个固定的常数。4、头等舱与经济舱顾客未按时取消订票的概率相等五、问题分析与建立模型(1)方法一:分析:由所给数据,用Matlab软件来拟合函数,再根据函数来预测经济舱机票的参考价格。记2005年10月份为x=1,则05年11月份为x=2,以此类推。即:2005年10月为第一个月份,如:x=10,则表示06年7月拟合结果如下:6由求解报告得知:数学模型为:f(x)=a1*exp(-((x-b1)/c1)^2)+a2*exp(-((x-b2)/c2)^2)+a3*exp(-((x-b3)/c3)^2)+a4*exp(-((x-b4)/c4)^2)+a5*exp(-((x-b5)/c5)^2)+a6*exp(-((x-b6)/c6)^2)a1=258.1(-4931,5447)b1=11.84(-21.32,45)c1=5.754(-30.07,41.58)a2=-763.3(-4.991e+006,4.989e+006)b2=9.738(-2804,2823)c2=35.18(-6.951e+004,6.958e+004)a3=1400(-7.956e+004,8.236e+004)b3=27.96(-3.621,59.55)c3=6.392(-96.3,109.1)a4=1255(-3.937e+005,3.962e+005)b4=61.28(-1.531e+010,1.531e+010)c4=1.48e+004(-2.162e+012,2.162e+012)a5=-3.035e+008(-2.53e+013,2.53e+013)b5=162(-7.08e+005,7.083e+005)c5=29.06(-1.042e+005,1.043e+005)a6=-1285(-9.511e+004,9.254e+004)b6=28.36(20.3,36.43)7c6=4.848(-32.56,42.25)Goodnessoffit:SSE:2.234e+005R-square:0.8267AdjustedR-square:0.7448RMSE:78.78置信度为:95%。根据模型,由Matlab软件求得未来一年经济舱机票参考价格如下表所示:时间价格2010.047162010.0561
本文标题:数学建模(航空公司的预定票策略)
链接地址:https://www.777doc.com/doc-827274 .html