您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2018中考数学压轴题探究专题-:相似三角形的存在性问题
中考数学解法探究专题相似三角形的存在性问题考题研究:相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快.解题攻略:相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).解题思路:相似三角形存在性问题需要注意的问题:1、若题目中问题为,则对应线段已经确定。2、若题目中为与相似,则没有确定对应线段,此时有三种情况:①,②、③、3、若题目中为与,并且有、(或为90°),则确定了一条对应的线段,此时有二种情况:①、,②、需要分类讨论上述的各种情况。例题解析1.如图,已知抛物线y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点A、B,与y轴相交于点C,且点A在点B的左侧.(1)若抛物线过点G(2,2),求实数m的值;(2)在(1)的条件下,解答下列问题:①求出△ABC的面积;②在抛物线的对称轴上找一点H,使AH+CH最小,并求出点H的坐标;(3)在第四象限内,抛物线上是否存在点M,使得以点A、B、M为顶点的三角形与△ACB相似?若存在,求m的值;若不存在,请说明理由.2.图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连结AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,求出点P的坐标;若不存在,请说明理由.3.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)如果点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,连接BC,BE,求tan∠CBE的值;(3)点M是抛物线对称轴上一点,且△DAM和△BCE相似,求点M坐标.4.在平面直角坐标系xoy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(﹣1,0).(1)请直接写出点B、C的坐标:B(,)、C(,);并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于第一象限的点M.连接MB和MC,当△OCE∽△OBC时,判断四边形AEMC的形状,并给出证明;(3)有一动点P在(1)中的抛物线上运动,是否存在点P,以点P为圆心作圆能和直线AC和x轴同时相切?若存在,求出圆心P的坐标;若不存在,请说明理由.5.如图,在矩形ABCD中,AO=10,AB=8,分别以OC、OA所在的直线为x轴,y轴建立平面直角坐标系,点D(3,10)、E(0,6),抛物线y=ax2+bx+c经过O,D,C三点.(1)求抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使四边形MENC是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.6.如图,抛物线C1:y=ax2+bx+4与x轴交于A(﹣3,0),B两点,与y轴交于点C,点M(﹣,5)是抛物线C1上一点,抛物线C2与抛物线C1关于y轴对称,点A、B、M关于y轴的对称点分别为点A′、B′、M′.(1)求抛物线C1的解析式;(2)过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.7.如图,已知抛物线y=﹣x2+2x的顶点为A,直线y=x﹣2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.8.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.9.如图,已知抛物线y=ax2﹣x+c的对称轴为直线x=1,与x轴的一个交点为A(﹣1,0),顶点为B.点C(5,m)在抛物线上,直线BC交x轴于点E.(1)求抛物线的表达式及点E的坐标;(2)联结AB,求∠B的正切值;(3)点G为线段AC上一点,过点G作CB的垂线交x轴于点M(位于点E右侧),当△CGM与△ABE相似时,求点M的坐标.10.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点B、C的坐标;(2)求△ABC的内切圆半径;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.11.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)设点P是位于直线BC下方的抛物线上一动点,过点P作y轴的平行线交直线BC于点Q,求线段PQ的最大值;(3)在(2)的条件下,抛物线的对称轴与直线BC交于点M,问是否存在点P,使以M、P、Q为顶点的三角形与△CBO相似?若存在,请求出点P的坐标;若不存在,请说明理由.12.已知某二次函数的图象与x轴分别相交于点A(﹣3,0)和点B(1,0),与y轴相交于C(0,﹣3m)(m>0),顶点为点D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图①,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图②,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?13.如图,已知抛物线y=﹣x2+bx+3与x轴相交于点A和点B(点A在点B的左侧),与y轴交于点C,且OB=OC,点D是抛物线的顶点,直线AC和BD交于点E.(1)求点D的坐标;(2)连接CD、BC,求∠DBC余切值;(3)设点M在线段CA的延长线上,如果△EBM和△ABC相似,求点M的坐标.14.如图,抛物线y=ax2+bx+3与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于C点,抛物线的对称轴l与x轴交于M点.(1)求抛物线的函数解析式;(2)设点P是直线l上的一个动点,当PA+PC的值最小时,求PA+PC长;(3)在直线l上是否存在点Q,使以M、O、Q为顶点的三角形与△AOC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.15.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴的正半轴相交于点A,与y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD⊥x轴,且∠DCB=∠DAB,AB与CD相交于点E.(1)求证:△BDE∽△CAE;(2)已知OC=2,tan∠DAC=3,求此抛物线的表达式.参考答案与试题解析一.解答题(共15小题)1.如图,已知抛物线y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点A、B,与y轴相交于点C,且点A在点B的左侧.(1)若抛物线过点G(2,2),求实数m的值;(2)在(1)的条件下,解答下列问题:①求出△ABC的面积;②在抛物线的对称轴上找一点H,使AH+CH最小,并求出点H的坐标;(3)在第四象限内,抛物线上是否存在点M,使得以点A、B、M为顶点的三角形与△ACB相似?若存在,求m的值;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把点G的坐标代入抛物线的解析式中可求得m的值;(2)①根据(1)中的m值写出抛物线的解析式,分别求抛物线与x轴和y轴的交点坐标,根据坐标特点写出AB和OC的长,利用三角形面积公式求△ABC的面积;②由对称性可知:x=1,点A和B关于抛物线的对称轴对称,所以由轴对称的最短路径可知:连接BC与对称轴的交点即为点H,依据待定系数法可求得直线BC的解析式,将x=1代入得:y=,则点H的坐标为(1,);(3)在第四象限内,抛物线上存在点M,使得以点A、B、M为顶点的三角形与△ACB相似,根据∠ACB与∠ABM为钝角,分两种情况考虑:①当△ACB∽△ABM时;②当△ACB∽△MBA时,利用相似三角形的判定与性质,确定出m的值即可.【解答】解:(1)把点G(2,2)代入抛物线y=﹣(x+2)(x﹣m)中得:2=﹣(2+2)(2﹣m),m=4;(2)①由(1)得抛物线的解析式为:y=﹣(x+2)(x﹣4),当x=0时,y=﹣(0+2)(0﹣4)=2,∴C(0,2),∴OC=2,当y=0时,﹣(x+2)(x﹣4)=0,x=﹣2或4,∴A(﹣2,0),B(4,0),∴AB=2+4=6,∴S△ABC=AB•OC=×6×2=6;则△ABC的面积是6;②∵A(﹣2,0),B(4,0),由对称性得:抛物线的对称轴为:x=1,∵点A和B关于抛物线的对称轴对称,∴连接BC与对称轴的交点即为点H,此时AH+CH为最小,设直线BC的解析式为:y=kx+b,把B(4,0),C(0,2)代入得:,解得:,∴直线BC的解析式为:y=﹣x+2,当x=1时,y=,∴H(1,);(3)存在符合条件的点M,由图形可知:∠ACB与∠ABM为钝角,分两种情况考虑:①当△ACB∽△ABM时,则有,即AB2=AC•AM,∵A(﹣2,0),C(0,2),即OA=OC=2,∴∠CAB=45°,∠BAM=45°,如图2,过M作MN⊥x轴于N,则AN=MN,∴OA+ON=2+ON=MN,设M(x,﹣x﹣2)(x>0),把M坐标代入抛物线解析式得:﹣x﹣2=﹣(x+2)(x﹣m),∵x>0,∴x+2>0,∵m>0,∴x=2m,即M(2m,﹣2m﹣2),∴AM==2(m+1),∵AB2=AC•AM,AC=2,AB=m+2,∴(m+2)2=2•2(m+1),解得:m=2±2,∵m>0,∴m=2+2;②当△ACB∽△MBA时,则,即AB2=CB•MA,∵∠CBA=∠BAM,∠ANM=∠BOC=90°,∴△ANM∽△BOC,∴,∵OB=m,设ON=x,∴=,即MN=(x+2),令M[x,﹣(x+2)](x>0),把M坐标代入抛物线解析式得:﹣(x+2)=﹣(x+2)(x
本文标题:2018中考数学压轴题探究专题-:相似三角形的存在性问题
链接地址:https://www.777doc.com/doc-8301965 .html