您好,欢迎访问三七文档
第二课时排列的应用考点一无限制条件的排列问题[典例](1)有5个不同的科研小课题,从中选3个由高二(6)班的3个学习兴趣小组进行研究,每组一个课题,共有多少种不同的安排方法?(2)有5个不同的科研小课题,高二(6)班的3个学习兴趣小组报名参加,每组限报一个课题,共有多少种不同的报名方法?[解](1)从5个不同的课题中选出3个,由兴趣小组进行研究,对应于从5个不同元素中取出3个元素的一个排列.因此不同的安排方法有A35=5×4×3=60种.(2)由题意知,3个兴趣小组可能报同一科研课题,因此元素可以重复,不是排列问题.由于每个兴趣小组都有5种不同的选择,且3个小组都选择完才算完成这件事.由分步计数原理得,共有5×5×5=125种报名方法.[类题通法]没有限制条件的排列问题,即对所排列的元素或所排列的位置没有特别的限制,这一类题相对简单,分清元素和位置即可.[针对训练]6名学生排成两排,每排3人,则不同的排法种数为()A.36B.120C.720D.240解析:选C由于6人排两排,没有什么特殊要求的元素,故排法种数为A66=720.考点二排队问题[典例]7位同学站成一排.(1)其中甲站在最左端的位置,共有多少种不同的排法?(2)甲、乙不能站在排头和排尾的排法共有多少种?(3)其中甲不能站在排头、乙不能站在排尾的排法共有多少种?[解](1)先考虑甲站在最左端有1种方法,再在余下的6个位置排另外6位同学,共A66种排法.(2)法一:先考虑在除两端外的5个位置选2个安排甲、乙有A25种,再在余下的5个位置排另外5位同学的排法有A55种,共有A25·A55种排法.法二:考虑特殊位置优先法,即两端的排法有A25种,中间5个位置有A55种,共有A25·A55种排法.(3)法一:分两类:乙站在排头和乙不站在排头,乙站在排头的排法共有A66种,乙不站在排头的排法总数为:先在除甲、乙外的5人中选1人安排在排头的方法有5种,中间5个位置选1个安排乙的方法有5种,再在余下的5个位置排另外5位同学的排法有A55种,故共有A66+5×5A55种排法.法二:考虑间接法,总排法为A77,不符合条件的甲在排头或乙站排尾的排法均为A66种,但这两种情况均包含了甲在排头和乙站排尾的情况,故共有A77-2A66+A55种排法.[类题通法]排队问题的解题策略排队问题除涉及特殊元素、特殊位置外,还往往涉及相邻、不相邻、定序等问题.(1)对于相邻问题,可采用“捆绑法”解决.即将相邻的元素视为一个整体进行排列.(2)对于不相邻问题,可采用“插空法”解决.即先排其余的元素,再将不相邻的元素插入空中.(3)对于定序问题,可采用“除阶乘法”解决.即用不限制的排列数除以顺序一定元素的全排列数.[针对训练]1.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有()A.36种B.42种C.48种D.54种解析:选B分两类:第一类:甲排在第一位,共有A44=24种排法;第二类:甲排在第二位,共有A13·A33=18种排法,所以共有编排方案24+18=42种,故选B.2.6个人按下列要求站一排,分别有多少种不同的站法?(1)甲不站右端,也不站左端;(2)甲、乙站在两端;(3)甲不站左端,乙不站右端.解:(1)第一步,先从甲以外的5个人中任选两人站在左、右两端,有A25种不同的站法;第二步,再让剩下的4个人站在中间的4个位置,有A44种不同的站法,由分步计数原理有A25·A44=480种不同的站法.(2)让甲、乙先站两端,有A22种站法,再考虑中间4个位置,由剩下的4个人去站,有A44种不同的站法,由分步计数原理有A22·A44=48种不同的站法.(3)以元素甲的位置进行考虑,可分两类:甲站右端有A55种不同的站法;甲在中间4个位置之一,而乙不在右端,可先排甲后排乙,再排其余4个,有4×4×A44种不同的站法,故共有A55+4×4×A44=504种不同的站法.考点三组数问题[典例]用0,1,2,3,4这五个数字,组成五位数,(1)可组成多少个五位数?(2)可组成多少个无重复数字的五位数?(3)可组成多少个无重复数字的五位奇数?[解](1)各个数位上的数字允许重复,由分步计数原理得,共可组成五位数4×5×5×5×5=2500个.(2)法一:(优先考虑特殊位置)先排万位,从1,2,3,4中任取一个有A14种方法,其余四个位置排四个数字共有A44种方法,所以组成的无重复数字的五位数共有A14A44=96个.法二:(优先考虑特殊元素)先排0,除首位之外的其他四个数位均可,有A14种方法,其余四个数字全排,有A44种方法.故组成的无重复数字的五位数共有A14A44=96个.(3)(优先考虑特殊位置)先排个位,1和3均可,有A12种方法.然后从剩下的3个非0数中选一个排在万位,有A13种方法,最后将剩下的3个数排在其他三个数位上,有A33种方法.故组成的无重复数字的五位奇数共有A12A13A33=36个.[类题通法]组数问题中常用的知识:(1)能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数.(2)能被3整除的数的特征:各位数字之和是3的倍数;能被9整除的数的特征:各位数字之和是9的倍数.(3)能被4整除的数的特征:末两位是4的倍数.(4)能被5整除的数的特征:末位数是0或5;能被25整除的数的特征:末两位数是25的正整数倍.(5)能被6整除的数的特征:各位数字之和是3的倍数的偶数.[针对训练]用数字0,1,2,3,4,5组成没有重复数字的四位数,(1)可组成多少个不同的四位数?(2)可组成多少个四位偶数?解:(1)先排首位,有A15种排法,再排个位、十位和百位,有A35种排法,故共有A15A35=300个不同的四位数.(2)当个位数字是0时,有A35种;当个位数字不是0时,有A12A24A14种.所以共有A35+A12A24A14=156个,即可组成156个偶数.[课堂归纳领悟]1.解决排列问题时通常从以下三个途径考虑(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置,如组数问题中的首位,如果所给数字中有0,应先考虑首位不为0;(3)先不考虑附加条件,计算出排列数,然后去掉不符合要求的排列.2.解决组数问题应注意的几点(1)首位数字不为0;(2)若所选数字中含有0,则可先排0,即“元素分析法”;(3)若排列的数是特殊数字,如偶数,则先排个位数字,即“位置分析法”;(4)此类问题往往需要分类,可依据特殊元素,特殊位置分类.
本文标题:(江苏专用)2019-2020学年高中数学 第一章 计数原理 1.2 排列 第二课时 排列的应用课件
链接地址:https://www.777doc.com/doc-8341328 .html