您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 锅炉汽水系统及其过热汽温控制策略的仿真研究
重庆大学硕士学位论文锅炉汽水系统及其过热汽温控制策略的仿真研究姓名:吕红缨申请学位级别:硕士专业:动力工程指导教师:唐胜利;朱贻伟20060401ISmithIIABSTRACTItiscriticaleffecttogripthedynamiccharacteristicofwater-steamsystemofboilerwhichestablishesthedynamicmathematicalmodelanddoresearchanalysisonsimulation.AtpresentthepowerplantadoptnormalsuperheatsteamtemperaturecascadesuperheatingcontrolsystembasedontraditionalPIDcontrol,itismoredifficulttoobtainsatisfactorycontrolperformancewhentheoperatingconditionhasgreaterchanges.Forthesecurityandeconomicofpowerplant,researchthenewcontrolmethodwhichcanovercomethedisadvantagesoftraditionalsuperheatsteamtemperaturecontrolsystemhasimportantmeaning.Accordingtothesimulationmodelofwater-steamsystemof360MWunitinLUOHUANGPOWERSTATION,thedynamicbehaviorofthemodelisabstainedbysimulationexperimentwithdisturbance.Asimulationmodelofsuperheatsteamtemperatureisestablishedbasedonthedynamicbehavior,whichisusedtothesimulationstudyofSmithpredictorcontrolandgainadaptivecontrolstrateges.Thisessayhastoucheduponthefollowingwork:Consideringmodularmodelingtechnique,asimulationmodelonthewater-steamsystemofboilerispresentedinthethesis.Accordingtothesimulationmodelofwater-steamsystem,hascarriedoutsimulationexperimentwithfuelquantity,steamervalveandattemperatingquantitydisturbance.Andthedynamicbehaviorofthemodelisabtained.HasanalyzedthepowerplantadoptnormalsuperheatsteamtemperaturecascadesuperheatingcontrolsystemwhichbasedontraditionalPIDcontrolatpresent,anddiscussedthenewstrateges.Hasbuiltupthedentificationmodelofsuperheatsteamtemperatureaccordingtothedynamicbehaviorofsuperheatsteamtemperaturewhichhasbeenabtainedbyattemperatingquantitydisturbance.accordingtothedentificationmodel,hascomparedthecontrolcapabilityofSmithpredictorcontrol,gainadaptivecontrolandtraditionalPIDcontrolbyattemperatingquantitydisturbance.TheresultofsimulationillustratesthedynamicbehaviorcanbereflectedrightlybythemodelIIIandthecontrolcapabilityofofSmithpredictorcontrolandgainadaptivecontrolhavebeenimprovedevidently.KeywordsModularSimulationSteam-waterSystemsuperheatsteamtemperatureSmithpredictorcontrolIVAm2CkJ/kgkg/[s(kg/m2pa)]0.5DmFgm/s2hkJ/kgHmJkwKLmmkgmole/molekgNPPaKwQkJqJ/m2htsTukJ/kgUKJw/m2Vm3vm/sWkg/sXYZmkg/m3Velswga111213storesResistiveRSRRSRRSSConnectivemodel14MWMWMWMWMWMWMWMWMWPIDPID15PIDPIDPIDPIDPIDPIDPIDZ-NPIDsmithAstromEklundMelloAstromBellMW16PIDPIDPIDPIDDahlinSmithSmith17SmithSmithSmithSmith28R.Dolezal29Fig.2-1OutlettemperatureResponsewithinlettemperaturestepadding12342102.2.1SEE-SAWSEE-SAWxddtvvLelrrr=-()()(2-1)LAwAv=rVLA=ddtwwVlelr=-(2-2)wV211dudtvhhLqwle(),rr=--+-(2-3)qw,LAVdudtwhwhQWeell()r=-+-(2-4)QWdUdtwhwhQWleell=-+-(2-5)dvdtgppLgSinFcle()rra=----(2-6)FLASinzzLela=-()/LdwdtgAppAgzzFecelelx=-+--()()(2-7)FkwAxee=122r(2-8)dwdt/=0wcppgzzeelsel=-+-rr()()2(2-9)c2122.2.2hpr=fhp(,)ddthdhdtpdpdtphr¶r¶¶r¶=+(2-10)=+a¶hpdhdtdpdta¶r¶a¶r¶hpphhp==,dpdtVwwdVdtdhdtpelh=---11ara[()](2-11)UMuVh==-r(pVhVrrr)=-(2-12)dVhpVdtwhwhQWeell()r-=-+-(2-13)dhdtVwhwhQWVdpdtVhddtleellll=-+-+-1rr[()](2-14)2132.2.3a¶r¶hphfhp==1(,)(2-15)a¶r¶phpfhp==2(,)(2-16)Tfhp=3(,)(2-17)r=fhp4(,)(2-18)3143.1.1WTable3-1PrimaryparametersofthedifferentloadMW375.936027018014.40t/h10991006748.2506.8428t/h1006927.9705.8468.1392.3bar195192.3143.797.184.70bar18418313792.681bar43.840.329.719.716.10bar41.838.428.418.614.90541541541541525336328331333320540540540525500t/h19.414.343.000t/h16.515.16.000kg/s370.5364.5284.6223.0193.1kg/s444.5414.7325.0253.7221.310401013925834790152146136128123t/h154.214310976.2063.7089.890.090.389.6289.183153.1.23.2.1Fig.3-1Steam-watersystemofboiler3163.2.2MW3.2.3317Table3-2Comparebetweenthecaculatingvalueanddesigningvalueofmodelbar192.30192.30.00bar181.43183.000.86bar38.4038.400.00bar0.950.9590.00bar180.45179.000.80bar0.940.9410.21bar40.0542.034.71540.67541.000.06540.00540.000.00Fig.3-2Simulationmodeldiagram3181009.61013.00.33143.44140.002.46t/h953.86996.104.24kg/s364.77364.500.07t/h148.50142.004.58MW98.0296.002.103-5319Fig.3-3Fuelquantitydisturb–10%Fig.3-4Steamervalvedisturb+10%Fig.3-5Attemperatingwaterquantitydisturb+10%42044.1.1±10±54214.1.24-14-2PID2TTÄPIDPIDÄTT1Fig.4-1AttemperatingwatercascadecontrolsystemTTd/dtÓTTÄPIDFig.4-2Thecontrolsystemofmainsteamtemperaturewithleadderivativesignal4224.1.3PIDPIDDCSPIDPIDSmithPIDPIDSmithABBBaileyDCSSmithSmith423Smith4.2.1SmithSmithPID0()sWset-0()Ws()cWs00()()()1()()scsscWsWseWsWsWsett--=+(4-1)set-()WstSmithWcSWoSe-ôsR(s)Y(s)Fig.4-3Thesingleloopcontrolsystemwithpurelag4244-4)()()()('sWesWosUsYstt+=-(4-2))()()(sWosWesWos=+-tt)1)(()(sesWosWtt--=(4-3)set-ssssssesRsYesWosWcsWosWcesWosWcesWosWcesWosWcesWosWcsRsYttttttt------=+=+++=)()()()(1)()()()(1)()(1)()(1)()()()(4-40)()(1=+sWosWc(4-5)4.2.2Y’(s)Fig.4-4TheprincipleofSmithprecompensationWcsWose-ôsR(s)Y(s)WôsYô(s)U(s)+D(s)425Fig.4-5Dynamiccharacteristicofinletsteamtemperatureofhightemperaturesuperheater122()115Wss=-+300213()(152.5)sWses-=-+Fig.4-6Dynamiccharacteristicofoutletsteamtemperatureofhightemperaturesuperheater426300221()0.59(115)()()(152.5)sWssWseWss-+==+4.2.3SmithSmithFig.4-7Compare1betweendentificatio
本文标题:锅炉汽水系统及其过热汽温控制策略的仿真研究
链接地址:https://www.777doc.com/doc-835183 .html